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CHAPTER 1

Stochastic Simulation of Chemical
Reactions

The goal of this chapter is to introduce stochastic chemical reaction processes and some
algorithms to simulate them numerically. We will also develop some analytic tools to
study these processes and begin to discuss similarities and differences between determin-
istic and stochastic models of the same phenomena.

1.1 Stochastic Simulation of Degradation

1.1.1 Introducing Stochastic Simulation Algorithms (SSAs)

We begin with the simplest possible chemical reaction process. Consider an experiment
starting with n0 molecules of a chemical species denoted by A; A reacts at rate k in the
absence of any stimulus and upon reacting, a molecule of A transitions into some other
species that is not of interest to us.

We can represent this reaction process more succinctly using the following notation:

A
k−→ ∅. (1.1)

The symbol ∅ here simply denotes a species not of interest in the experiment, rather
than meaning that a molecule of A disappears after reacting. Note also that we are not
considering the spatial extent of this experiment, we are assuming that the system is
spatially homogeneous and that each molecule of A reacts exactly as described by (1.1)
regardless of its spatial position (an assumption we will relax later in the course). We
also choose to model this system as evolving in continuous time.

Let A(t) denote the number of molecules of species A in the experiment at time t. Suppose
dt > 0 is a small quantity (think ε > 0 that will later be sent to zero) and consider the
dynamics of the process (1.1) in the time interval [t, t + dt). There are 3 possibilities for
what can happen in [t, t + dt) and we assign them the following probabilities:

• No reactions occur: P[A(t + dt) = A(t)] ≈ 1 − A(t)kdt + O(dt2)
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4 1.1 Stochastic Simulation of Degradation

• Exactly one reactions occurs: P[A(t + dt) = A(t) − 1] ≈ A(t)kdt + O(dt2)

• More than one reaction occurs: P[A(t + dt) < A(t) − 1] ≈ O(dt2)

If dt is sufficiently small, we can neglect the O(dt2) terms and thus ignore the possibility
of multiple reactions occurring “simultaneously”.

Information

From its definition, the degradation process has the Markov property, i.e.

P[A(t + dt) = n | A(s), s ≤ t] = P[A(t + dt) = n | A(t)].

Can you give an intuitive explanation of why this is the case? Since it is posed in
continuous time, A is formally called a Markov jump process.

Deferring the mathematical analysis of this process for now, how could we simulate a
sample path of the process to find the number of molecules of A remaining at time t
given A(0) = n0? We could try to find a chemical with reaction rate k and conduct the
actual experiment, or we can simulate the process on a computer! To this end, we may
introduce the following “naive” stochastic simulation algorithm (SSA) for the process
(1.1):

At time t = 0, set A(0) = n0, then:

1 Generate a random number r ∼ U([0, 1]),

2 If r < A(t)k∆t, then

• set A(t + ∆t) = A(t) − 1, set t = t + ∆t, and go back to 1 ,

else set A(t + ∆t) = A(t), set t = t + ∆t, and go back to 1 .

We can stop this procedure whenever there are no molecules of A left to react or when t
reaches some maximal stopping time T that we choose in advance. The quantity ∆t > 0
is some fixed discretisation parameter that we have chosen a priori (see below).

But does this algorithm really simulate the process described by (1.1)?

To understand the motivation for step 1 and the effect of step 2 , recall that a uniform
random variable r ∼ U([0, 1]) has CDF given by

F (x) = P[r < x] =


0, x < 0,

x, x ∈ [0, 1],
1, x > 1.

Hence the probability of one reaction occurring in the interval [t, t+∆t) in step 2 is P[r <
A(t)k∆t] = A(t)k∆t, assuming that A(t)k∆t < 1. This emphasises the need to choose
∆t sufficiently small for the algorithm to have the appropriate reaction probabilities. In
fact, we want to choose ∆t � 1/A(t)k because this ensure that the probability of multiple
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reactions taking place in [t, t + ∆t) is very small, which is what we want according to the
definition of the process above. However, there is a trade-off between accuracy and speed
here: a smaller ∆t means lower probability of multiple reactions and numerical error, but
a smaller ∆t also means more compute time (and more intervals in which no reactions
take place).

Virtually all modern programming languages have algorithms for generating (pseudo-)
random numbers and we can use such routines to generate the uniformly distributed
random numbers called for in step 1 to execute the naive SSA. The output of some
simulations of the degradation process using this algorithm are shown in Figure 1.1.
The left panel in Figure 1.1 shows two sample paths compared to what we called the
deterministic mean. The motivation for this comparison is that a principle called the
law of mass action can be invoked to yield a simple deterministic model of the reaction
process (1.1).

Information

The law of mass action states that: “the rate of a chemical reaction is directly
proportional to the product of the activities or concentrations of the reactants.”

If we assume our chemical is at unit volume (for simplicity), then A reacts at a constant
rate and so the deterministic model is given by the linear ODE

d

dt
A(t) = −kA(t), A(0) = n0. (1.2)

This equation approximately describes the evolution of the mean of the stochastic model
and is readily solved to show that

A(t) = n0e
−kt, t ≥ 0.

The deterministic model of the mean behaviour is strictly decreasing in time and thus
does not capture the qualitative behaviour of individual trajectories very well. However,
the right panel of Figure 1.1 shows that it captures the behaviour of the average over a
large number of simulations quite well; the stochastic mean at time t is calculated as the
average value at that time over 20 simulations of the process. It is worth noting that
the naive SSA is very inefficient in this example as we chose our parameters to ensure
a very small probability of multiple reactions occurring in [t, t + ∆t). In fact, we had
P[one reaction in [t, t + ∆t)] ≈ 0.01. But this means that step 1 is mostly wasted as we
generate lots of random numbers that we don’t use! We can be more efficient than that...

Have a go!

Open the course Github page and try running the MATLAB script:

CH1_naive_SSA_degradation.m

1. How does the difference between the deterministic and stochastic means change
as you vary the number of realisations?
2. What happens if you set ∆t = 1 and how can we explain this behaviour?

From an efficiency standpoint, we can do much better than the naive SSA, but this
advancement requires a change of perspective. In developing the naive SSA we focused

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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Figure 1.1: Left: Some paths of the degradation process compared to the corresponding determ-
inistic model of the same process. Right: Stochastic mean compared to the mean
predicted by the deterministic model. Parameters: n0 = 20, k = 0.1, ∆t = 0.005.

on matching the transition probabilities of the underlying process on short time intervals,
stepping forward a short time step and then repeating the probability matching step. We
might instead ask: When is the next reaction going to take place? If we know when the
next reaction will take place, then we can just skip ahead to that time, let the reaction
occur, and repeat this process.

The problem we have now is that the time of the next reaction is random. But since it is
just some (continuous) random variable related to the reaction rate, we can compute its
distribution. To this end, let τ denote the next reaction time and take t, s > 0. Define
the function f(A(t), s)ds to be the probability that no reaction occurs in the interval
[t, t + s] and that exactly one reaction occurs in [t + s, t + s + ds]. f(A(t), s) is the PDF
of τ , the random variable giving the next reaction time, and so by computing f , we can
identify the distribution of τ .

Suppose there are n molecules of A at time t, then
f(A(t), s)ds = P [A(t + s + ds) = n − 1, A(t + s) = n|A(t) = n]

= P [A(t + s + ds) = n − 1 | A(t + s) = n]︸ ︷︷ ︸
one reaction in [t+s,t+s+ds]

P [A(t + s) = n | A(t) = n]︸ ︷︷ ︸
no reactions in [t+s]

.

Letting g(A(t), s) denote the probability that no reaction occurs in the interval [t, t + s],
we can write the formula above more succinctly as

f(A(t), s)ds = g(A(t), s)A(t + s)kds

= g(A(t), s)A(t)kds, (1.3)
where the second equality holds because we are conditioning no reactions occurring in
[t, t + s]. For any σ > 0, using the definition of g(A(t), s) yields that

g(A(t), σ + dσ) = g(A(t), σ) [1 − A(t + σ)kdσ]
= g(A(t), σ) [1 − A(t)kdσ]

where the last equality follows because A(t) = A(t + σ) if there is no reaction in [t, t + σ].
Rearranging the equality above and letting dσ ↓ 0 then gives that g obeys the ODE

d

dσ
g(A(t), σ) = −A(t)kg(A(t), σ).
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Note that the derivative is with respect to σ here, not t! Solving this ODE gives

g(A(t), σ) = g(A(t), σ)e−A(t)kσ = e−A(t)kσ

since g(A(t), 0) = P[no reaction at time t] = 1. Plugging this back into (1.3) and cancel-
ling ds on both sides shows that

f(A(t), s) = A(t)ke−A(t)ks. (1.4)

Recall that the PDF of an exponential random variable with rate parameter λ is given
by

f(x) = λe−λx, x ≥ 0,

and hence we can conclude that τ ∼ Exp[kA(t)].

Information

In general, the waiting times (time intervals between reactions/jumps) of a Markov
jump process are exponentially distributed.

We want to simulate the degradation process and so we now need to simulate expo-
nentially distributed random numbers in order to find the next reaction time at each
step. Previously, we assumed that our computer could generate random numbers that
are uniformly distributed on [0, 1], but fortunately, there is a simple way to generate an
exponential random variable from a uniform one.

Suppose U ∼ U([0, 1]) and F denotes the CDF of a continuous random variable. If F is
invertible, then V = F −1(U) is distributed according to F . To see this, just calculate the
CDF of V as follows:

P[V ≤ x] = P[F −1(U) ≤ x] = P[u ≤ F (x)] = F (x).

Can you justify all of the equalities in the calculation above? This procedure is called the
inverse transform method and allows us to sample from any continuous distribution
with an invertible CDF given uniform random numbers.

The CDF of the exponential distribution with rate λ > 0 is given by

F (x) =

0, x < 0,

1 − e−λx, x ≥ 0,

and hence

F −1(x) =

− 1
λ

log(1 − x) = 1
λ

log
(

1
1−x

)
, x ∈ (0, 1),

0, else.

Thus, if U ∼ U([0, 1]), then log(1/(1 − U))/λ ∼ Exp(λ). Furthermore, 1 − U ∼ U([0, 1])
and so log(1/U)/λ ∼ Exp(λ) as well; this is the formula that we will use to generate
exponentially distributed random numbers in the algorithms that follow.
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Have a go!

1. Calculate the inverse CDF for the exponential distribution and verify the formula
above!
2. Apply the inverse transform method to the Pareto distribution, which has PDF
given by

f(x) =


α βα

xα+1 , x ≥ β > 0,

0, else.
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We’re now ready to introduce our more efficient SSA:

At time t = 0, set A(0) = n0, then:

1 Generate a random number r ∼ U([0, 1]),

2 Compute the next reaction time by calculating

τ = 1
A(t)k

log(1/r).

3 Set t = t + τ , set A(t + τ) = A(t) − 1 and go back to 1 .

Figure 1.2 below shows the results of some simulations of the degradation process using
the more efficient SSA. There is a notable speed-up compared to the naive SSA when
plotting large numbers of realisations. We take advantage of this to illustrate further
differences between the deterministic model and stochastic one in the right panel of
Figure 1.2; this panel shows a comparison between the estimated PMF of the process at
t = 10 and the deterministic mean at the same time. We used 200 paths of the process
for this plot but more are probably required to fully capture the PMF of even this simple
process, further highlighting the need for efficient SSAs!

0 5 10 15 20 25 30
time [sec]

0

5

10

15

20

nu
m

b
er

of
m

ol
ec

ul
es

deterministic mean

0 5 10 15 20
0

10

20

30

40
Estimated PMF (t=10)
det. mean (t = 10)

Figure 1.2: Left: Some paths of the degradation process simulated using the more efficient SSA.
Right: Estimated PMF of the degradation process based on 200 realisations at time
t = 10. Parameters: n0 = 20, k = 0.1.

Have a go!

Open the course Github page and try running the MATLAB script:
CH1_more_efficient_SSA_degradation.m

1.1.2 The Chemical Master Equation

We now have a couple of ways to simulate the degradation process numerically, but we
also need some mathematical tools to analyse the process analytically. In modelling,

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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there is very often an interplay between theory and numerics; we typically want to prove
as much as possible about a model rigorously and use numerics to generate conjectures
and address questions that are not possible to answer with theoretical tools.

To this end, we introduce the chemical master equation for the degradation process
by letting

Pn(t) = P[A(t) = n], t ≥ 0, n ∈ N.

For a fixed value of t, Pn(t) is simply the probability mass function of the random variable
A(t), so we have a collection of PMFs indexed by (continuous) time. Our goal is to deduce
an evolution equation for how Pn(t) changes over time. As always, we assume there is
an infinitesimally small quantity dt, so that O(dt2) terms are negligible, and begin by
considering the event {A(t + dt) = n}. There are two ways we can arrive at this event,
either

• A(t) = n and there were no reactions in [t, t + dt), or

• A(t) = n + 1 and there was one reaction in [t, t + dt).

Hence
Pn(t + dt) = Pn(t)(1 − kndt)︸ ︷︷ ︸

no reactions in [t,t+dt)

+ Pn+1(t)(k(n + 1)dt)︸ ︷︷ ︸
one reaction in [t,t+dt)

.

Rearrangement yields

Pn(t + dt) − Pn(t)
dt

= k(n + 1)Pn+1(t) − knPn(t),

and letting dt ↓ 0 thus gives the system of ODEs

d

dt
Pn(t) = k(n + 1)Pn+1(t) − knPn(t), t ≥ 0, n ≥ 0. (1.5)

Information

In the theory of Markov jump processes, equation (1.5) is called the Kolmogorov
Forward Equation (sometimes just the Kolmogorov equation) for the process,
you might see this terminology used in other texts or papers.

The function Pn(t) contains all of the information we could ever want to know about the
stochastic process, but to obtain this information we need to solve the system of equations
(1.5)! In general, this is far from a trivial task for complex processes with many chemical
species and reactions (and that is before we even consider adding spatial extent to the
system!). However, we can solve (1.5) directly for the degradation process (1.1).

We can simplify the system immediately by thinking about the initial conditions of the
process. Since A(t) = n0, we have

Pn0(0) = 1, Pn(0) = 0 ∀n 6= n0. (1.6)

Moreover, the process A(t) is non increasing because we can never produce any new
molecules of A. Hence

Pn(t) = 0, ∀n > n0.
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These two facts already provide a significant simplification because we now have a finite
system of ODEs (after starting with a countable number of ODEs to solve) and we have
the initial condition at t = 0 for each value of n from (1.6). Our strategy from here is to
start with the equation for Pn0 and try to solve the system iteratively (until we hopefully
see a pattern). The equation for Pn0 reads:

d

dt
Pn0(t) = k(n0 + 1)Pn0+1(t) − kn0Pn0(t), Pn0(0) = 1.

But, as we just noted, Pn0+1(t) = 0 so we can immediately solve to find that

Pn0(t) = Pn0(0)e−kn0t = e−kn0t.

Next tackle the equation for Pn0−1(t), which now reads:
d

dt
Pn0−1(t) = kn0e

−kn0t − k(n0 − 1)Pn0−1(t).

Thankfully, this equation is still linear in Pn0−1, but it is inhomogeneous so we need to
use the variation of constants formula to solve it. We thus obtain

Pn0−1(t) = Pn0−1(0)e−k(n0−1)t + e−k(n0−1)t
∫ t

0
ek(n0−1)skn0e

−kn0s ds

= n0e
−k(n0−1)t

(
1 − e−kt

)
.

Now we begin to see the pattern: We can take the solution for Pn0−1, plug it into the
equation for Pn0−2 and apply the variation of constants formula to then solve that linear
inhomogeneous ODE, and carry on this procedure until we reach P0. In fact, we can show
by induction that the general formula for Pn is given by

Pn(t) =


0, n > n0, t ≥ 0,(

n0

n

)
e−knt(1 − e−kt)n0−n, 0 ≤ n ≤ n0, t ≥ 0.

(1.7)

We could have guessed the case n > n0 in (1.7): there is no chance that we can have
more than n0 molecules of A! The second part of the formula is less obvious but should
look familiar, at each fixed time t, this is the PMF of a Binomial random variable with
parameters n0 (number of trials) and e−kt (probability of success per trial). Succinctly,
we may write

Pn(t) ∼ Binomial(n0, e−kt).
Given the solution to the chemical master equation, we can answer virtually any ques-
tion regarding the process. In practice, we may want to know about its average behaviour,
its fluctuations (which are often characterised by the variance), or the probability of it
hitting a certain value by a given time. We can compute the mean of the process, M(t),
directly from (1.7) as follows:

M(t) := E[A(t)] =
∞∑

n=−∞
nPn(t) =

n0∑
n=0

nPn(t)

=
n0∑

n=0
n
(

n0

n

)
e−knt(1 − e−kt)n0−n

= n0e
−kt

n0−1∑
m=0

(
n0 − 1

m

) (
e−kt

)m
(1 − e−kt)(n0−1)−m

= n0e
−kt.
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This exactly matches the deterministic model for the mean behaviour that we obtained
by solving the ODE (1.2) obtained via the law of mass action. However, this is not true in
general and it is also worth noting that (1.2) can’t tell us more detailed information about
the paths, like their fluctuations or hitting times. For more complicated examples (coming
in later chapters), we will see more dramatic disagreement between the mean behaviour
predicted by the law of mass action and the dynamics of the underlying stochastic process.

Have a go!

1. Complete the inductive step from n0 − k to n0 − (k + 1) to obtain formula (1.7).
2. Use the more efficient SSA code to show that with enough realisations we obtain
an approximate Binomial distribution, in agreement with (1.7).

1.2 Stochastic Simulation of Production &
Degradation

1.2.1 The production/degradation process

We next consider a variation on the degradation process where we now add production
of species A to the set of possible reactions. We are still assuming that there is some
container of volume ν that holds the molecules of chemical A and that we can neglect
the spatial extent of the experiment. The new reaction process can be written as:

A
k1−→ ∅, ∅ k2−→ A. (1.8)

Once more, the ∅ simply denotes some chemical species not of interest, rather than
denoting that A is being produced out of thin air! Given that the volume of the container
is ν, we will assume that production of A is proportional to k2ν so that the input scales
appropriately with the system size. It is worth remarking that the units of k1 will be
sec−1 and those of k2 are sec−1m−3 because production was chosen to scale with volume.
This all leads to the following characterization of the transition rates in a (small) interval
[t, t + dt):

• No reactions occur: P[A(t+dt) = A(t)] ≈ 1−A(t)k1dt−k2νdt+O(dt2)

• One molecule of A is produced: P[A(t + dt) = A(t) + 1] ≈ k2νdt + O(dt2)

• One molecule of A is degraded: P[A(t + dt) = A(t) − 1] ≈ A(t)k1dt + O(dt2)

• More than one reaction occurs: P[multiple reactions in [t, t + dt)] ≈ O(dt2).

Based on the transition rates outlined above, we can define the propensity function of
the process

α(t) := A(t)k1 + k2ν.
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This definition is motivated by the fact that the probability of a reaction occurring in
[t, t + dt) is given by α(t)dt (+O(dt2) terms). We might also call the propensity function
the total reaction rate of the process.

Next we outlined a version of our efficient SSA that we claim simulates the produc-
tion/degradation process described above:

At time t = 0, set A(0) = n0, then:

1 Generate random numbers r1, r2 ∼ U([0, 1]).

2 Compute the propensity function for the process, i.e.

α(t) = k1A(t) + k2ν.

3 Compute the next reaction time by calculating

τ = 1
α(t)

log(1/r1),

and set t = t + τ .

4 Compute the number of A molecules at time t = t + τ :

A(t + τ) =

A(t) + 1, if r2 < k2ν/α(t),
A(t) − 1, if r2 ≥ k2ν/α(t),

and go back to 1 .

Does this scheme correctly simulate the production/degradation process?

Step 3 in the scheme generates an exponentially distributed random number with rate
parameter α(t) as the next reaction time. We could consider a single reaction, as in the
last section, by letting production or degradation be one reaction, the reaction rate
of this simplified process would be:

P[one reaction in [t, t + dt)] = P[production in [t, t + dt) or degradation in [t, t + dt)]
= P[production, no degradation] + P[no production, degradation]
= (k1A(t)dt)(1 − k2νdt) + (k2νdt)(1 − k1A(t)dt)
= (k1A(t) + k2ν)dt = α(t) dt.

In other words, the single reaction or reaction/no-reaction process has reaction rate α(t)
and we showed in the previous section that the waiting time before its next reaction time
is exponential distributed with rate parameter α(t), thus justifying 3 .

Step 4 tells us, conditional on a reaction having taking place in [t, t + dt), whether a
production or degradation reaction took place. Since r2 ∼ U([0, 1]), we can calculate the
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(conditional) probabilities of production or degradation:

P[production] = P
[
r2 <

k2ν

k1A(t) + k2ν

]
= k2ν

k1A(t) + k2ν
,

P[degradation] = P
[
r2 ≥ k2ν

k1A(t) + k2ν

]

= 1 − k2ν

k1A(t) + k2ν
= k1A(t)

k1A(t) + k2ν
.

Note that these calculations were facilitated by the fact that, given positive rate constants,
volume and a non-zero number of molecules, we have

k2ν

k1A(t) + k2ν
∈ (0, 1), k1A(t)

k1A(t) + k2ν
∈ (0, 1).

We conclude from these computations that the relative probabilities (and they are true
probabilities being in (0, 1)) of production and degradation are proportional to their rates,
which at least seems a sensible state of affairs!

A more rigorous justification of steps 3 and 4 is to note that conditional on the
current value of the process, A(t), the production and degradation reactions are
independent single-reaction processes (until the next reaction occurs). Therefore the
waiting time until the next degradation reaction is exponentially distributed with rate
parameter k1A(t) and the waiting time until the next production reaction is exponentially
distributed with rate parameter k2ν. Hence the waiting time until the next reaction time
for the production/degradation system is simply the minimum of these two waiting times.
Once the next reaction takes place, A(t) changes, these two (independent) clocks are reset
and we wait again to see which takes place first.

Suppose ED ∼ Exp(k1A(t)) and EP ∼ Exp(k2ν) so that τ = min(ED, EP ) is the waiting
time until the next reaction in the production/degradation process. Crucially, ED and
EP are independent here because A(t) is fixed. What is the distribution of τ? Compute
the CDF of τ as follows:

P[τ > x] = P[min(ED, EP ) > x] = P[EP > x, ED > x]
= P[ED > x]P[EP > x]
= e−k1A(t)xe−k2νx = e−(k1A(t)+k2ν)x

= e−α(t)x, x > 0.

Thus τ ∼ Exp(α(t)), as claimed before. Moreover, we can directly compute the probab-
ility that a production reaction occurs next by computing P[production] = P[EP < ED]
since this is just the probability that one exponential random variable is less than another
(and they are both independent!). Carrying out this calculation shows that

P[production] = P[EP < ED] = k2ν

k1A(t) + k2ν
, (1.9)

in agreement with the formulae above.

Have a go!

Directly compute P[EP < ED] to show that (1.9) holds.
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Figure 1.3: Sample paths of the production/degradation process generating using the more ef-
ficient SSA and compared to the deterministic mean; the deterministic mean was
obtained by solving the deterministic model generated by the law of mass action.
Parameters: k1 = 0.1, k2 = 1, ν = 1, A(0) = n0 = 0.

Figure 1.3 shows some sample paths of the production/degradation process generated
using the more efficient SSA. All sample paths begin with A(0) = 0 but, for this parameter
choice, production outpaces degradation initially before the process levels off somewhat
around 10 molecules (on average). The deterministic mean in this plot is generated by
using the law of mass action to derive a deterministic model for the average behaviour of
the system.

Have a go!

1. Open the course Github page and try running the MATLAB script:

CH1_production_degradation.m

2. Use the law of mass action to derive a deterministic model for the produc-
tion/degradation process and verify the formula for the deterministic mean in the
code above.

1.2.2 Deriving the chemical master equation

To derive the chemical master equation for the production/degradation process we again
consider the question: How can the number of molecules changes between time t and time
t+dt? Suppose we have n molecules at time t+dt, i.e. A(t) = n, then we either had n+1
molecules at time t and a degradation reaction took place in the interval [t, t + dt), or we
had n − 1 molecules and a production took place in [t, t + dt), or we had n molecules at
time t and nothing happened in [t, t + dt)! Letting Pn(t) = P[A(t) = n], we can express
this probabilistically as follows:

Pn(t + dt) = Pn(t) [1 − k1ndt − k2νdt] + Pn+1(t) [k1(n + 1)dt] + Pn−1(t) [k2νdt] . (1.10)

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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Rearranging and letting dt ↓ 0 thus yields

d

dt
Pn(t) = k1(n + 1)Pn+1(t) − k1nPn(t) + k2νPn−1(t) − k2νPn(t), for all n ≥ 0,

with the convention that Pn(t) ≡ 0 for all n < 0.

Unlike the pure degradation process, there is no upper bound on the number of molecules
in the production/degradation process and hence we can’t reduce this countably-infinite
system of ODEs to a finite system like we could previously. In practice, we would hope
to show (or somehow know by other means!) that Pn(t) tends to zero as n → ∞; this
would justify truncating the system at some large but finite value of n in order to solve
it numerically.

Even for this relatively simple process, the chemical master equations are challenging to
solve analytically. Instead, we will compute the mean and variance processes, i.e.

M(t) =
∞∑

n=0
nPn(t), V (t) =

∞∑
n=0

(n − M(t))2 Pn(t),

as these are typically more tractable and still offer considerable insight into the dynamics
of the process.

To derive an evolution equation for the mean, multiply (1.10) by n and sum over n:

d

dt

∞∑
n=0

nPn(t) = k1

∞∑
n=0

n(n + 1)Pn(t) − k1

∞∑
n=0

n2Pn(t)

+ k2ν
∞∑

n=0
nPn−1(t) − k2ν

∞∑
n=0

nPn(t)

= k1

∞∑
m=0

m(m − 1)Pm(t) − k1

∞∑
n=0

n2Pn(t)

+ k2ν
∞∑

m=0
(m + 1)Pm(t) − k2ν

∞∑
n=0

nPn(t)

= −k1

∞∑
n=0

nPn(t) + k2ν
∞∑

n=0
Pn(t)

⇐⇒ d

dt
M(t) = −k1M(t) + k2ν,

where the final equality used the fact that ∑∞
n=0 Pn(t) = 1.
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Information

In the preceding calculation we freely exchanged the limiting operations of differ-
entiation and infinite summation, i.e. we implicitly claimed that

d

dt

∞∑
n=0

nPn(t) =
∞∑

n=0
n

d

dt
Pn(t).

Changing the order of limiting operations can, and often does, change the result of
a calculation. For example, consider the function f(n, m) = n/(n+m) and let both
n and m tend to infinity, order matters here! However, we can interchange limits
without worrying about changing the result when the conditions of uniform con-
vergence are satisfied. You can assume we have uniform convergence throughout
this course, unless explicitly noted otherwise.

It is straightforward to then solve this linear inhomogeneous ODE for M(t) to show that

M(t) = M(0)e−k1t + k2ν

k1

(
1 − e−k1t

)
, t ≥ 0. (1.11)

Similarly, but with slightly more pain along the way, we can deduce an evolution equation
for V (t). This begins by simplifying the definition of V (t) first:

V (t) =
∞∑

n=0
(n − M(t))2 Pn(t) =

∞∑
n=0

(n2 − 2nM(t) + M(t)2)Pn(t)

=
∞∑

n=0
n2Pn(t) − 2M(t)

∞∑
n=0

nPn(t) (1.12)

= −M(t)2 +
∞∑

n=0
n2Pn(t). (1.13)

We need to write the sum involving n2 in terms of M(t) and V (t) to obtain a closed
system so go back to (1.10), multiply across by n2 and sum over n:

d

dt

∞∑
n=0

n2Pn(t) = k1

∞∑
n=0

n2(n + 1)Pn+1(t) − k1

∞∑
n=0

n3Pn(t)

+ k2ν
∞∑

n=0
n2Pn−1(t) − k2ν

∞∑
n=0

n2Pn(t)

= k1

∞∑
n=0

(−2n2 + n)Pn(t) + k2ν
∞∑

n=0
(2n + 1)Pn(t)

=⇒ d

dt
V (t) + 2M(t) d

dt
M(t) = −2k1(V (t) + M(t)2) + k1M(t) + 2k2νM(t) + k2ν,

where the last implication requires us to insert (1.12) to replaces the sums with n2 terms.
Tidying this up leaves us with the following evolution equation for V (t):

d

dt
V (t) = −2k1V (t) + k1M(t) + k2ν, t ≥ 0. (1.14)
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Equation (1.14) is another linear inhomogeneous ODE and can be solved given that we
know M(t) from (1.11). Instead, we focus on an approach that tends to be tractable for
more complex systems, namely, to focus on the large time or asymptotic behaviour of the
process. To this end, define the quantities Ms and Vs by

Ms := lim
t→∞

M(t), Vs := lim
t→∞

V (t).

Assuming that these limiting quantities are well-defined for this system (which is far
from a given in general!), we can compute them by solving the steady-state versions of
the evolution equations (setting the time derivates to zero):

0 = −k1Ms + k2ν, 0 = −2k1Vs + k1Ms + k2ν.

Thus
Ms = Vs = k2ν

k1
.

This already gives us good information on the average behaviour of the system, and
fluctuations around that average, for large times but we can actually take our asymp-
totic analysis a step further. To do so, define the stationary distribution ϕ of the
production/degradation process by:

ϕ(n) := lim
t→∞

Pn(t), n ≥ 0. (1.15)

If the limit in (1.15) is well-defined for each n ≥ 0, then we can compute the stationary
distribution by solving the steady-state version of the chemical master equation (1.10),
i.e.

0 = k1(n + 1)ϕ(n + 1) − k1nϕ(n) + k2νϕ(n − 1) − k2νϕ(n), n ≥ 0,

where ϕ(n) ≡ 0 for all n < 0. We can solve this system recursively by starting at n = 0
and trying to then guess the general form of the solution. For n = 0, we have

0 = k1ϕ(1) − k2νϕ(0) =⇒ ϕ(1) = k2ν

k1
ϕ(0).

Since ϕ is a PMF, we have the additional normalisation constraint that ∑∞
n=0 ϕ(n) = 1

and this will allow us to determine ϕ(0) later if we can find the general formula for ϕ up
to a multiplicative constant. It can be shown by induction that

ϕ(n) = 1
n!

(
k2ν

k1

)n

e−k2ν/k1 , n ≥ 0,

and hence, for large times, the production/degradation process is approximately Poisson
distributed with parameter k2ν/k1.

Figure 1.4 shows a comparison of the stationary distribution with the estimated PMF of
the process at different times points. In all simulations, A(0) = 0 and we can see how the
bias of the initial condition begins to disappear gradually as we take larger and larger
time intervals. By t = 100, the estimated PMF is already in very close agreement with
the asymptotic behaviour predicted by the stationary distribution.
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Figure 1.4: Simulations of the production/degradation process starting with A(0) = 0 with
the PMF estimated at different times and compared to the stationary distribution.
Parameters: k1 = 0.1, k2 = 1, ν = 1, A(0) = n0 = 0.

Have a go!

Open the course Github page and try playing with the MATLAB script:

CH1_production_degradation_CME.m

Try varying the initial conditions and the time interval parameter T to observe how
the mean and skewness of the estimated PMF vary.

1.3 Higher Order Chemical Reactions

Thus far we have only dealt with chemical reaction processes in which reactions depend
linearly on the number of molecules of a given species. In reality, most chemical reactions
of interest involve two or more molecules interacting. For example, a simple second
order chemical reaction would be the reaction process:

A + B
k−→ C,

where a molecule of A and a molecule of B react at rate k to produce a molecule of C.
We once more neglect spatial extent here but clearly the A and B molecules would need
to come together in space to cause such a reaction. We are assuming the molecules are in
some container with volume ν and hence the reaction rates should naturally scale with
volume. For example, if the volume is increased, then A and B molecules will take longer
on average to bump into each other (assuming there is no attraction/repulsion between
them and that both species are distributed uniformly randomly in the container). Thus
we will assume

P [one reaction between an A and a B molecule in [t, t + dt)] ≈ k

ν
dt + O(dt2),

so that the reaction rates scale appropriately with volume. The total number of possible
A-B pairs that could react together at time t is A(t)B(t) and hence

P [one reaction in [t, t + dt)] ≈ k

ν
A(t)B(t)dt + O(dt2).

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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A slightly different type of second order chemical reaction is the process

A + A
k−→ C, (1.16)

where two molecules of A join together by ions or bonds to form a new chemical species C,
a process called dimerisation. In this case, the reaction rate of the system will depend
on the number of possible A-A pairs, which is given by(

A(t)
2

)
= A(t)(A(t) − 1)

2
.

Thus the propensity function for the dimerisation process (1.16) is given by

α(t) =


kA(t)(A(t)−1)

2ν
, A(t) ≥ 2,

0, A(t) < 2.

Table 1.1 below lists some simple reaction processes of different orders, along with their
propensity functions (α(t)) and the units of their reaction rates (k).

Reaction order α(t) units of k

∅ k−→ A zero kν m−3 sec−1

A
k−→ ∅ first kA(t) sec−1

A + B
k−→ ∅ second kA(t)B(t)/ν m−3 sec−1

A + B + C
k−→ ∅ third kA(t)B(t)C(t)/ν2 m−6 sec−1

Table 1.1: Some low order chemical reaction processes.

Implicit in all of these processes is the assumption that the molecules are well-mixed
spatially, meaning that a molecule of any species is equally likely to encounter a molecule
of any other species. Later in the course we will consider biological processes where
this well-mixedness assumption is very strongly violated, such as in chemotaxis in cell
biology (in which cells are attracted to/repulsed by other cells) or prey that move to
avoid predators in ecological models.

Have a go!

Write down the propensity functions for the following reaction processes:
1. 2A + B

k−→ ∅,
2. A + 2B + C

k−→ ∅,
3. 2A + 3B

k−→ ∅.

1.4 Stochastic Simulation of Dimerisation

The chemical master equations for complex higher-order reaction processes are typically
very hard to solve analytically. In this section we will use an example of a dimerisation
process to introduce the probability generating function approach to solving the chemical
master equations.
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1.4.1 Probability Generating Functions

Before introducing the probability generating function (PGF) of a stochastic process, we
may define the PGF of a random variable as follows:

For a discrete random variable X taking values in the set {x0, x1, . . . }, its probability
generating function G is the function

G : [−1, 1] 7→ R, G(x) =
∞∑

n=0
xnP[X = xn]. (1.17)

The PGF of a random variable contains all of the information about the distribution of
the random variable. In particular, it is straightforward to show from the formula (1.17)
that

P[X = xn] = 1
n!

G(n)(x)
∣∣∣∣∣
x=0

, (1.18)

where G(n)(x) denotes the nth derivative of G with respect to x. The formula (1.18) gives
us a very direct way to recover the PMF of a random variable once we know its PGF.
Similarly, the PGF and the moments of a random variable are related by the formula:

E
[

X!
(X − k)!

]
= G(k)(x)

∣∣∣∣∣
x=1

, k ≥ 0.

The formula above refers to the kth factorial moment of the random variable but from
this we can deduce formulae for the mean and variance, which are given by

E[X] = d

dx
G(x)

∣∣∣∣∣
x=1

, Var[X] =

 d2

dx2 G(x) + d

dx
G(x) −

(
d

dx
G(x)

)2
 ∣∣∣∣∣

x=1
. (1.19)

For example, if we consider a Poisson distributed random variable Y with parameter
λ > 0, its PGF is given by

GY (x) =
∞∑

n=0
xn λne−λ

n!
= e−λ

∞∑
n=0

(xλ)n

n!
= eλ(x−1).

We can thereby calculate the mean of Y as suggested above using the formula (1.19):

E[Y ] = d

dx
GY (x)

∣∣∣∣∣
x=1

= λeλ(x−1)
∣∣∣∣∣
x=1

= λ.

1.4.2 Dimerisation Process Analysis

Consider the second-order stochastic reaction process given by

A + A
k1−→ ∅, ∅ k2−→ A. (1.20)

The propensity function of the process (1.20) is thus given by

α(t) = k1

ν
A(t)(A(t) − 1) + k2ν,
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where ν denotes the system volume and we have absorbed the constant 1/2 owing to the
number of possible A pairs into the rate constant k1. The more efficient SSA applied to
the dimerisation process (1.20) takes the following form:

At time t = 0, set A(0) = n0, then:

1 Generate random numbers r1, r2 ∼ U([0, 1]).

2 Compute the propensity function α(t)

3 Compute the next reaction time by calculating

τ = 1
α(t)

log(1/r1),

and set t = t + τ .

4 Compute the number of A molecules at time t = t + τ :

A(t + τ) =

A(t) + 1, if r2 < k2ν/α(t),
A(t) − 2, if r2 ≥ k2ν/α(t),

and go back to 1 .

We defer simulating the process for now and instead proceed directly to its analysis via
the chemical master equations. Adopting our usual approach, we see that

Pn(t + dt) = Pn(t)
[
1 − k1

ν
n(n − 1)dt − k2νdt

]

+ k1

ν
(n + 1)(n + 2)Pn+2(t)dt + k2νPn−1(t)dt.

Rearranging and letting dt ↓ 0, we obtain the system of ODEs:

d

dt
Pn(t) = k1

ν
(n + 1)(n + 2)Pn+2(t) − k1

ν
n(n − 1)Pn(t) + k2νPn−1(t) − k2νPn(t), (1.21)

with the convention that Pn ≡ 0 for n < 0.

Clearly, it will not be particularly fun or easy to solve the system of equations (1.21)!
Worse still, it is not possible to write a closed system of equations for the mean and
variance of this process via manipulating the chemical master equations (as we did before).
Instead we proceed via the probability generating function of the process:

G : [−1, 1] × (0, ∞) 7→ R : G(x, t) =
∞∑

n=0
xnPn(t).

As we can see, the PGF of a stochastic process is defined analogously to the PGF of a
random variable, except now we have an extra argument to account for the time at which
we are evaluating the process A(t). Formulae for the PMF, mean and variance of A(t)
are exactly the same as those shown above, i.e. in equations (1.18) and (1.19). Therefore,
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if we can obtain the PGF of the process, it contains all of the same information as the
PMF and is thus functionally equivalent to solving the chemical master equation!

To derive an evolution equation for the PGF of the process, multiply (1.21) across by xn

and sum over n to show that:
∂

∂t

∞∑
n=0

xnPn(t) = k1

ν

∞∑
n=0

xn(n + 1)(n + 2)Pn+2(t) − k1

ν

∞∑
n=2

xnn(n − 1)Pn(t)

+ k2ν
∞∑

n=0
xnPn−1(t) − k2ν

∞∑
n=0

xnPn(t). (1.22)

Next note the identity

∂2

∂x2 G(x, t) =
∞∑

n=2
n(n − 1)xn−2Pn(t),

which we will use to simplify the sums above. Changing the indices in the 1st and 3rd
sums in (1.22) yields

∂

∂t
G(x, t) = k1

ν

∞∑
n=2

n(n − 1)xn−2Pn(t) − k1

ν
x2

∞∑
n=2

n(n − 1)xn−2Pn(t)

+ k2νx
∞∑

n=0
xnPn(t) − k2ν

∞∑
n=0

xnPn(t)

=⇒ ∂

∂t
G(x, t) = k1

ν
(1 − x2) ∂2

∂x2 G(x, t) + k2ν(x − 1)G(x, t). (1.23)

Thus (1.23) is a second-order PDE for the PGF of the dimerisation process and if we can
solve it, we will recover all of the information contained in the PMF of the process. To
solve the PDE (1.23), we need to supply some initial and boundary conditions. Firstly,

G(x, 0) =
∞∑

n=0
xnPn(0), x ∈ [−1, 1]

so we can compute the initial condition for each x given the initial conditions of the
process. We also need boundary conditions at x = 1 and x = −1. At x = 1, we have

G(1, t) =
∞∑

n=0
Pn(t) = 1

and evaluating (1.23) at x = −1 gives us

∂

∂t
G(−1, t) = −2k2νG(−1, t)

so that G(−1, t) = G(−1, 0)e−2k2νt. These conditions plus (1.23) thus constitute a well-
posed initial-value problem that could be solved analytically or numerically, although this
is not straightforward either!

Instead of trying to solve (1.23) directly, we will analyse the asymptotic behaviour of the
process via the stationary probability generating function Gs, which is given by:

Gs : [−1, 1] 7→ R, Gs(x) = lim
t→∞

G(x, t) =
∞∑

n=0
xnϕ(n),
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where ϕ is the stationary distribution of the process. We can then obtain the asymp-
totic mean, Ms := limt→∞ M(t), the asymptotic variance, Vs := limt→∞ V (t), and the
stationary distribution, ϕ, via the stationary PGF. Since the stationary PGF, Gs, does
not depend on t, (1.23) becomes

0 = k1

ν
(1 − x2) d2

dx2 Gs(x) + k2ν(x − 1)Gs(x),

which simplifies to the second order ODE

G′′
s(x) = k2ν

2

k1

1
1 + x

Gs(x), x ∈ (−1, 1).

The general solution of this ODE can be written as

Gs(x) = C1
√

1 + xI1

2
√

k2ν2(1 + x)
k1

+ C2
√

1 + xK1

2
√

k2ν2(1 + x)
k1

 ,

where C1, C2 are constants and the modified Bessel functions I1 and K1 are two inde-
pendent solutions to the equation

z2I ′′
n(z) + zI ′

n(z) − (z2 + n2)In(z) = 0.

Since we are now studying the stationary PGF, we use our old boundary conditions as
t → ∞, i.e.

lim
t→∞

G(1, t) = 1, lim
t→∞

G(−1, t) = lim
t→∞

G(−1, 0)e−2k2νt = 0.

The functions I1 and K1 obey

I1(z) ∼ z

2
as z ↓ 0, K1(z) ∼ 1

z
as z ↓ 0

and combining this with the boundary conditions allows us to deduce that C2 = 0 and

C1 =

√
2I1

2
√

2k2ν2

k1

−1

.

We thus have an explicit formula for Gs(x) in terms of the modified Bessel function I1:

Gs(x) =
√

1 + x I1

2
√

k2ν2(1 + x)
k1

√
2I1

2
√

2k2ν2

k1

−1

, x ∈ [−1, 1].

This formula can be evaluated numerically as the function I1 implemented in most math-
ematical software (such as in MATLAB or appropriate Python packages).

1.4.3 Simulation of the Dimerisation Process

In this section, we summarise and conclude our analysis of the dimerisation process (1.20).
We have a number of tools and approaches we can use to understand the dynamics of
this process, including:
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• direct simulation (using the more efficient SSA),

• analytic approaches: chemical master equation, PGF, stationary PGF, etc.

• deterministic modelling via the law of mass action.

In order to compare all of these tools in a unified analysis, we need to apply the law of
mass action to develop a deterministic model of (1.20). This yields the nonlinear ODE:

d

dt
a(t) = −2k1a(t)2 + k2, (1.24)

where a(t) = A(t)/ν is the concentration of A molecules. We can solve this ODE nu-
merically or solve the steady-state version of equation (1.24) to see that it predicts the
long-run mean of A(t) will be ν

√
k2/2k1.

Figure 1.5 presents a synthesis of the three forms of analysis of the dimerisation process
outlined above. In the left panel, we show sample paths of the process, together with the
long-run mean obtained via analytic calculations (red dashed line) and the solution to the
ODE (1.24) (dashed black line). The law of mass action predicts a slightly lower mean
value than the long-run mean, Ms, and these quantities differ in general for this model
(which we will show in problem classes). We also plot Ms ± 2

√
Vs in the left-hand panel

to show that these bounds give a good idea of the fluctuations of the process around its
long-run mean. This works because Chebyshev’s inequality tells us that any distribution
with a finite mean and variance has approximately 75% of its mass within two standard
deviations of either side of the mean (where the standard deviation here is

√
Vs).
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Figure 1.5: Left: Sample paths compared to the solution of the mass action ODE model and to
the long run mean and variance. Right: Comparison between the stationary distrib-
uted obtained analytically and the estimated PMF from simulations. Parameters:
A(0) = 15, k1 = 0.005, k2 = 1.

The right-hand panel of Figure 1.5 shows the estimated PMF of the dimerisation process
at t = 100 using 1, 000 sample paths of the process obtained via the more efficient SSA.
The solid red line denoted by “analysis” in the legend is the stationary distribution of the
process calculated from an analytic formula based on the calculations of the preceding
section (see problem classes for more details!).
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Have a go!

Open the course Github page and try playing with the MATLAB script:

CH1_dimerisation_process.m

Try varying the parameters (time interval, initial conditions, reaction rates) to
observe how the analysis presented above changes.

1.5 The Gillespie Stochastic Simulation Algorithm

1.5.1 Gillespie SSA Formulation

The “more efficient SSA” that we introduced in this Chapter is a special case of the
so-called Gillespie algorithm for simulating Markov jump processes. The Gillespie al-
gorithm is a classic example of Stigler’s law of eponymy, i.e. the “rule” that scientific
discoveries are not named after the person who discovered them. Physicist Dan Gillespie
popularised the algorithm that now bears his name in a 1977 paper concerning the simula-
tion of chemical systems, but the algorithm was known some 35 years prior. The Gillespie
algorithm was first implemented in 1950 by English mathematician and statistician David
George Kendall on the Manchester Mark 1 computer.

In this section, we formulate the Gillespie algorithm for a general stochastic reaction
process with q ≥ 1 chemical reactions. Let αi(t) denote the propensity function of the
ith reaction. Note that we don’t need to specify the number of chemical species involved,
what matters is the number of distinct possible reactions.

At time t = 0, set the initial number of molecules in each species, then:

1 Generate random numbers r1, r2 ∼ U([0, 1]).

2 Compute the propensity function of the system:

α0(t) =
q∑

i=1
αi(t).

3 Compute the next reaction time by calculating

τ = 1
α0(t)

log(1/r1),

and set t = t + τ .

4 Figure out which of the q reactions took place by find the integer j such that:

r2 ≥ 1
α0(t)

j−1∑
i=1

αi(t), r2 <
1

α0(t)

j∑
i=1

αi(t).

Carry out reaction j, i.e. adjust the number of molecules in each species to account
for reaction j occurring at time t = t + τ . Go back to step 1 .

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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The justification for this algorithms correctness is a natural generalisation of the rationale
we provided for the two species case. Step 3 is asserting that the next reaction time is
exponentially distributed with parameter α0(t), where α0(t) is the sum over all of the q
individual reactions rates. To see that this is correct, we can once again note that condi-
tional on the current state of the system, the waiting time until the ith reaction occurs is
τi ∼ Exp(αi(t)) and each pair of waiting times τi, τj are (conditionally) independent for
i 6= j. Hence

τ = min (τ1, τ2, . . . , τq) ,

where τ is the waiting time for the entire system. Using the mutual independence of the
individual waiting times, we have

P[τ > x] = P[τ1 > x, . . . , τq > x] =
q∏

i=1
P[τi > x] = e−x

∑q

i=1 αi(t) = e−α0(t)x.

Therefore, τ ∼ Exp(α0(t)), as claimed.

Step 4 ensures that we have

P[reaction i occurs | some reaction occurs] = αi(t)
α0(t)

,

which can be verified as the correct probability by computing P[min(τ1, . . . , τq) = τi].
Intuitively, we can think of the condition in Step 4 as breaking up the interval [0, 1]
into q subintervals where the length of subinterval j is proportional to αj(t). We then
draw r2 ∼ U([0, 1]) and see which subinterval r2 falls in; if r2 falls in subinterval j, then
reaction j takes place.

There are many ways to improve upon the algorithm outlined above and we will study
some of them later in the course. Some improvements exploit special structure in the
processes we are simulating, other improvements are more broadly applicable. For ex-
ample, we only need update the propensity functions αi(t) which changed the last time
a reaction took place. This often means that most propensity functions do not need to
be changed after every reaction and offers significant speed up for systems with large
numbers of reactions.

1.5.2 Gillespie SSA Example

Consider the following stochastic reaction process involving dimerisation and production:

A + A
k1−→ ∅, A + B

k2−→ ∅, ∅ k3−→ A, ∅ k4−→ B. (1.25)

We will use this process to illustrate some of the difficulties that we typically encounter
when considering more complex reactions with multiple species and multiple higher-order
reactions; both of these features are naturally present in most practical problems of
interest.
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The propensity functions for the reaction process (1.25) are:

α1(t) = k1

ν
A(t)(A(t) − 1), α2(t) = k2

ν
A(t)B(t),

α3(t) = k3ν, α4(t) = k4ν.

To simulate the process (1.25), we need to compute the overall propensity function for
the process

α0(t) = α1(t) + α2(t) + α3(t) + α4(t),

to compute the next reaction time. If τ is the next reaction time, then the step to update
the number of A and B molecules according to the Gillespie algorithm will be:

A(t + τ) =


A(t) − 2, 0 ≤ r2 < α1/α0,

A(t) − 1, α1/α0 ≤ r2 < (α1 + α2)/α0,

A(t) + 1, (α1 + α2)/α0 ≤ r2 < (α1 + α2 + α3)/α0,

A(t), else,

and

B(t + τ) =


B(t), 0 ≤ r2 < α1/α0,

B(t) − 1, α1/α0 ≤ r2 < (α1 + α2)/α0,

B(t), (α1 + α2)/α0 ≤ r2 < (α1 + α2 + α3)/α0,

B(t) + 1, else.

At this point we could simulate the process directly via our SSA but first we will consider
our other typical lines of attack: The chemical master equations and the law of mass
action.

As the number of reactions and species increases, so does the complexity of the chemical
master equations. In particular, we now need to consider the joint density of the species.
To this end, define

Pn,m(t) = P[A(t) = n, B(t) = m].

Proceeding in the usual way, we may write

Pn,m(t + dt) =
[
1 − k1

ν
n(n − 1)dt − k2

ν
nmdt − k3νdt − k4νdt

]
Pn,m

+ k1

ν
(n + 2)(n + 1)Pn+2,mdt + k2

ν
(n + 1)(m + 1)Pn+1,m+1dt

+ k3νPn−1,mdt + k4νPn,m−1dt,

where we have suppressed the t arguments on the right-hand side. Letting t ↓ 0, the
chemical master equations are thus given by

d

dt
Pn,m(t) = k1

ν
(n + 2)(n + 1)Pn+2,m + k2

ν
(n + 1)(m + 1)Pn+1,m+1

+ k3νPn−1,m + k4νPn,m−1 − k1

ν
n(n − 1)Pn,m

− k2

ν
nmPn,m − k3νPn,m − k4νPn,m,
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for n, m ≥ 0, with the standard convention that Pn,m ≡ 0 if either n < 0 or m < 0.

Due to the presence of the second-order reactions, we cannot even write a closed system
of evolution equations for the mean and variance via the chemical master equations! We
could solve these equations, or their steady-state analogue, numerically if we wanted
detailed information on the distribution or stationary distribution.

Finally, we can employ the law of mass action to write an approximate deterministic model
for the mean behaviour of the process (1.25). Letting a(t) = A(t)/ν and b(t) = B(t)ν,
we obtain the following pair of nonlinear ODEs:

d

dt
a = −2k1a

2 − k2ab + k3,

d

dt
b = −k2ab + k4. (1.26)

Figure 1.6 below shows some sample paths of the process (1.25) with the corresponding
solutions to the deterministic model (1.26) overlaid for comparison (dashed black lines).
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Figure 1.6: Parameters: k1 = 0.001, k2 = 0.01, k3 = 1.2, k4 = 1.

We can gain more information about the dynamics of the process by running more and
longer simulations. This allows us to estimate the stationary distribution which charac-
terizes the asymptotic behaviour of the process (1.25). Figure 1.7 shows the estimated
stationary distribution in the left-hand panel, i.e. the joint PMF of A(t) and B(t) as
t → ∞. The right-hand panel of Figure 1.7 shows the marginal stationary distribution
of A(t), which can be obtained from the joint stationary distribution via the formula

ϕ(n) =
∞∑

m=0
ϕ(n, m),

where ϕ(n) := limt→∞ P[A(t) = n] and ϕ(n, m) := limt→∞ P[A(t) = n, B(t) = m].
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CHAPTER 2

Deterministic vs Stochastic Models

The goal of this chapter is to build a deeper understanding of the qualitative differences
that are possible between deterministic and stochastic models of the same system. We
saw in Chapter 1 that the law of mass action can give good predictions of the average
behaviour for zero and first order reactions. Even the mean behaviour of higher-order
reactions is not perfectly predicted by the analogous deterministic model, although the
differences were not pronounced in the examples we have seen thus far. The examples we
consider presently show that there can be dramatic differences in the qualitative beha-
viour of a stochastic reaction process and its deterministic mass action model. Moreover,
these novel stochastic dynamics form the basis of current modelling work for a myriad of
real-world systems, ranging from biological applications such as cell-fate dynamics and
neuroscience, to ecological applications like coral-reef stability and vegetation dynamics.

2.1 Multistable Systems

Consider the following stochastic reaction process involving a single chemical species A:

3A
k1−→ 2A, 2A

k2−→ 3A, A
k3−→ ∅, ∅ k4−→ A. (2.1)

The process (2.1) involves production, degradation and several dimerisation-type reac-
tions. If we apply the law of mass action to this process, we can derive a deterministic
model for the average behaviour of the concentration of species A, i.e. a(t) = A(t)/ν
where ν is the system volume.

Multiplying the reaction rates by the concentrations for each reaction, we arrive at the
following deterministic model for the process:

d

dt
a(t) = −k1a(t)3 + k2a(t)2 − k3a(t) + k4, t ≥ 0. (2.2)

We can solve for the equilibrium solutions of this model by solving the cubic polynomial

0 = −k1a
3 + k2a

2 − k3a + k4 =: f(a),

and we can readily evaluate their stability by computing the sign of the “Jacobian”, f ′(a),
of the system at each equilibrium point. The number of steady states and their stability

31
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can vary with the system parameters, but, as an example of the possible dynamics, take

k1 = 0.00025, k2 = 0.18, k3 = 37.5, k4 = 2200.

In this parameter regime, we find three steady states:

A1 = 100, A2 = 220, A3 = 400.

Linear stability analysis tells us that A1 and A3 are stable, while A2 is unstable. Since
the ODE (2.2) is one dimensional, f(0) > 0, and f(a) < 0 for all a > 0 sufficiently large,
all trajectories must end up at either A1 and A3 as t → ∞. Trajectories cannot cross the
(unstable) solution, A2 and thus limt→∞ A(t) = A1 if A(0) < A2 and limt→∞ A(t) = A3 if
A(0) > A2. Our qualitative analysis of the dynamics is illustrated in the left-hand panel
of Figure 2.1 where we plot trajectories against time for different initial conditions with
the equilibrium solutions denoted by the dashed black lines.

The right-hand panel of Figure 2.1 is a one-parameter bifurcation diagram of the system
(2.2) where we have allowed the production rate parameter, k3, to vary. The values of k1,
k2 and k4 are fixed to the same values as above. As k3 varies, we track the number of
solutions and their stability; stable solutions are in red, while unstable solutions are in
black. We observe that the system has two stable solutions for k3 between 36 and 38.9
approximately. In this bistable regime, the dynamics are qualitatively as described
above (where we had k3 = 37.5). The bistable regime begins and ends with saddle-node
bifurcations and the system has only one stable solution before/after these bifurcation
points.
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Figure 2.1: Left: Solutions of the deterministic model (2.2) for different initial conditions.
Right: One parameter bifurcation diagram for the deterministic model varying
the production rate parameter k3. Parameters: k1 = 0.00025, k2 = 0.18, k3 = 37.5
(left), k4 = 2200.

Bifurcation diagrams with the same qualitative structure as in Figure 2.1 are found
in many real-world applications and may have very important implications in a given
applied scenario. For example, suppose that the upper stable (red) branch represents a
state with high tree cover and the lower stable branch represents a state with low tree
cover. We would care enormously if an external process (e.g. climate change) increased
the bifurcation parameter past the upper saddle-node bifurcation (k3 ≈ 38.9) and caused
the system to suddenly drop to a much lower tree cover state! We can imagine similar
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potential catastrophes if the y-axis represented the abundance of a certain species. How-
ever, if the parameter k3 does not change value, then the deterministic model predicts
either one steady-state solution or the other, there can be no switching between the
alternative stable states.

Have a go!

Write down the propensity function for the process (2.1) and hence sketch the
pseudocode for the Gillespie SSA to simulate the process. What is the most efficient
way to write the conditions for updating the number of A molecules?

We begin our analysis of the stochastic reaction process by simulating the system using
the Gillespie algorithm. Figure 2.2 shows some sample paths of the process (blue) and
the corresponding trajectory of the deterministic model (2.2) (red). In the left-hand
panel of Figure 2.2, we observe reasonable agreement between the respective solutions
as we only consider a very short time interval. However, in the right-hand panel, the
stochastic solutions show qualitatively different behaviour once we run the process for
long enough. In particular, the blue sample paths cross the unstable solution of the
deterministic model (A2, middle black dashed line) and switch between spending time
near each of the stable solutions of the deterministic model (A1 and A3). This switching
behaviour is impossible in the deterministic model and is an entirely new phenomenon
introduced by the stochasticity of the process (2.1).

Figure 2.2: Comparison between deterministic model trajectories and simulations of the process
(2.1) on short and long time intervals. Parameters: k1 = 0.00025, k2 = 0.18, k3 =
37.5, k4 = 2200.

From an applied perspective, this noised-induced (attractor) switching introduces
a new possibility when studying systems with alternative stable states. Even if the
parameters of the system do not change, the system may spontaneously shift from one
stable state to another due to stochastic fluctuations! The mean switching time is
the average time the system spends in one stable state or the other. In general, it can
depend on which state the system starts in as it may be easier to switch in one direction
compared to the reverse transition. The mean switching time can give us a measure
of how stable the system is to random perturbations and is often used as a measure
of a systems stability or “resilience”. The mean switching time can be estimated from
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simulations of a model and there are also analytic approaches for its computation that
we will study later in the course.

Have a go!

Open the course Github page and try playing with the MATLAB script

CH2_bistable_process.m

to see how the switching frequency varies as you change system parameters.

We can study the chemical master equations of the process (2.1) to gain more insight into
the nature of this switching phenomenon and to understand how much time the system
is expected to spend in each stable state.

If we consider dt > 0 sufficiently small, we can reason in the usual way that the change
in the PMF Pn(t) := P[A(t) = n] over the interval [t, t + dt) is given by

Pn(t + dt) =
(

1 − k1

ν2 n(n − 1)(n − 2)dt − k2

ν
n(n − 1)dt − k3ndt − k4νdt

)
Pn(t)

+ k1

ν2 (n + 1)n(n − 1)Pn+1(t) dt + k2

ν
(n − 1)(n − 2)Pn−1(t) dt

+ k3(n + 1)Pn+1(t) dt + k4νPn−1(t) dt.

Rearranging and letting dt ↓ 0 thus yields the chemical master equations:

d

dt
Pn = k1

ν2 (n + 1)n(n − 1)Pn+1 + k2

ν
(n − 1)(n − 2)Pn−1 + k3(n + 1)Pn+1 + k4νPn−1

− k1

ν2 n(n − 1)(n − 2)Pn − k2

ν
n(n − 1)Pn − k3nPn − k4νPn, n ≥ 0, (2.3)

where we have suppressed the t dependence in Pn for brevity. We also adopt our usual
convention that Pn ≡ 0 for all n < 0.

We will now consider the asymptotic behaviour of the process and thus proceed to the
steady state version of the CMEs in order to compute the stationary distribution, ϕ. The
steady-state version of (2.3) is given by:

0 = k1

ν2 (n + 1)n(n − 1)ϕ(n + 1) + k2

ν
(n − 1)(n − 2)ϕ(n − 1) + k3(n + 1)ϕ(n + 1)

+ k4νϕ(n − 1) − k1

ν2 n(n − 1)(n − 2)ϕ(n) − k2

ν
n(n − 1)ϕ(n) − k3nϕ(n) − k4νϕ(n),

for n ≥ 0 and ϕ(n) = 0 for n < 0. Recursively solving these equations, we can write the
solution in terms of ϕ(0) as

ϕ(n) = ϕ(0)
n−1∏
i=0

(k2/ν)i(i − 1) + k4ν

(k1/ν2)(i + 1)i(i − 1) + k3(i + 1)
, n ≥ 1. (2.4)

We know that ∑∞
n=0 ϕ(n) = 1, so we can calculate ϕ(n) for a large value range of values

of n and then normalize to find the stationary distribution in practice.

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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Figure 2.3 shows the results from using 10,000 simulations of the process to estimate the
PMF at a large time compared to evaluating the formula (2.4) for the stationary distribu-
tion. We see excellent agreement between the analytic and direct simulation approaches
with both showing a distinctly bimodal distribution. The peaks of the distribution are
centred on the stable states of the deterministic model (2.2), i.e. A1 = 100 and A3 = 400,
with a local minimum between these values around 220, the value of A2. Moreover, the
peak at A = 100 is 8 times higher than the peak at A = 400, suggesting that the system
will tend to spend much more time close to A = 100 in this parameter regime.
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Figure 2.3: Comparison of the stationary distribution and the estimated long term behaviour
from 10,000 simulations of the process. Parameters: k1 = 0.00025, k2 = 0.18,
k3 = 37.5, k4 = 2200.

We will return to the switching time problem later in the course and develop further tools
to estimate the time a stochastic system spends near a stable state before switching to
another.

2.2 Self-induced Stochastic Resonance

In this section, we will use a relatively simple chemical reaction process to illustrate
another distinct kind of novel noise-induced dynamics. Consider the two-species reaction
process given by

2A + B
k1−→ 3A, ∅ k2−→ A, A

k3−→ ∅, ∅ k4−→ B. (2.5)

Letting a(t) = A(t)/ν and b(t) = B(t)/ν, we can use the law of mass action to write
down an approximate deterministic description of the average behaviour of the process
(2.5). Our deterministic approximation is given by

d

dt
a(t) = k1a(t)2b(t) + k2 − k3a(t),

d

dt
b(t) = −k1a(t)2b(t) + k4. (2.6)
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Have a go!

Write down the pseudocode for the Gillespie SSA to simulate the process (2.5).

We will proceed to simulate the process (2.5) and compare the resulting dynamics with
those predicted by the approximate deterministic model (2.6). For the purposes of com-
paring dynamics, we choose the parameter set

k1 = 0.0004, k2 = 50, k3 = 10, k4 = 25.

Figure 2.4 A shows the evolution of the number of A molecules in both the stochastic and
deterministic models; we immediately notice that the two models exhibit qualitatively
different dynamics. The deterministic model quickly tends to a steady-state, while the
stochastic model shows a reasonably regular pattern of oscillations (with some irregularity
due to the stochasticity of the process). Figure 2.4 B shows both the A and B molecule
evolutions against time and shows regular oscillations in both molecules numbers, with
much more abrupt spikes in species A compared to the more gradual spikes for species B.
What is the source of this dramatic disagreement between the stochastic and deterministic
dynamics?
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Figure 2.4: A: Comparison of the stochastic dynamics (2.5) and deterministic dynamics of the
ODEs (2.6). B: Time evolutions of the number of A and B molecules for a realisation
of the stochastic process (2.5).

To understand the divergence in qualitative behaviour between the stochastic and determ-
inistic dynamics, we plot the trajectories of both models in the phase space in Figure 2.5.
Figure 2.5 A and B show the trajectories of the process (2.5) in blue with a single path
in panel A and multiple paths in panel B. In both panels, the deterministic solution is
plotted in red and it approaches the fixed point where the nullclines of the system in-
tersect (green curves). The parabolic shaped green curve is the a nullcline of (2.6) (i.e.
da/dt = 0), while the almost vertical green line is the b nullcline (db/dt = 0). In Figure
2.5 C, we plot the direction field of the deterministic system (2.6), along with several
solutions of the deterministic system. Blue ticks mark the start of each deterministic
solution, with a red tick marking the endpoint of the trajectory. Solutions starting left of
the a nullcline proceed directly to the fixed point, but trajectories starting to the right of
this nullcline undergo a long sojourne to the right, before eventually coming back to the
fixed point. There is only one fixed point of the deterministic system in this parameter
regime and it is globally stable, meaning all trajectories are attracted to it for any initial
condition.
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Figure 2.5: A/B: One/multiple trajectories of the process (2.5) plotted in the phase space. C:
Direction field and solutions to (2.6) plotted in the phase space. [k4 = 25.]

The stochastic trajectories follow the red deterministic trajectory up the left-hand part
of the a nullcline, but when the blue trajectory crosses to the right of the a nullcline, it is
then sent on a long excursion to the right; this long excursion to the right corresponds to
the spike in the number of A molecules (and the rapid drop in the number of B molecules)
observed in Figure 2.4. Figure 2.5 B suggests that the process crosses the a nullcline with
higher probability the higher the number of B molecules, but in principle this crossing
could occur anywhere along the nullcline with a large enough stochastic fluctuation. This
spontaneous crossing of the nullcline is impossible in the deterministic model. We call
this phenomenon of noise-induced oscillations self-induced stochastic resonance.

If we increase the parameter k4 from 25 to 100, the dynamics of the deterministic
model change and enter an oscillatory regime. Figure 2.6 shows a comparison of the
stochastic and deterministic dynamics in this regime. We now observe qualitative agree-
ment between the dynamics, although Figure 2.6 shows that the period of the oscillations
is not in exact agreement. The key change here is that increasing k4 shifts the b nullcline,
and hence the fixed point, to the right. Note that the a nullcline does not depend on
k4. Now all deterministic trajectories are sent around the fixed point and take the long
excursion to the right, resulting in a stable periodic solution akin to what we observed
previously for the stochastic trajectories with k4 = 25.

101 102 103

number of A molecules

0

200

400

600

800

1000

1200

1400

nu
m

b
er

 o
f B

 m
ol

ec
ul

es

stochastic
deterministic

0.5 1 1.5
time [min]

101

102

103

nu
m

b
er

 o
f A

 m
ol

ec
ul

es

stochastic
deterministic

A B

Figure 2.6: A: Comparison of deterministic and stochastic trajectories in the phase space. B:
Time evolution of the number of A molecules in the stochastic and deterministic
models. [k4 = 100.]

As we increased k4 from 25 to 100, we passed through a bifurcation point of the ODE
(2.6). At this bifurcation, the fixed point where the nullclines intersect became unstable
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and stable periodic solutions emerged. Thus, another interpretation of the stochastic
resonance phenomenon we observed in this model is that the stochastic fluctuations in
the process (2.5) brought about the onset of oscillations earlier (i.e. for a lower value of
k4) than predicted by the deterministic model.

The example presented above illustrates that oscillations can be triggered by a noisy
process pushing a system over a threshold. In fact, this situation is observed in an array of
applications in mathematical biology. For example, this motif is the basis of intense study
in neuroscience, where the threshold represents the spiking threshold for a neuron to fire
and transmit information to other neurons across the brain. Two of the most well-known
models in neuroscience, the Hodgkin-Huxley model and (its simpler phenomenological
counterpart) the Fitzhugh-Nagumo model, both exhibit stochastic resonance. Later in
the course, we will develop the analytic tools to study stochastic resonance in greater
detail and understand how it is impacted by both the level of noise and the specific
dynamics (geometry) of the system.

Have a go!

Open the course Github page and try playing with the MATLAB script

CH2_stochastic_resonance.m

to see how the stochastic and deterministic dynamics vary as you change the value
of the k4 parameter.

Can you find the value of k4 where stable oscillations start in the system (2.6)?
What do the dynamics near the bifurcation point suggest about the type of bifurc-
ation that occurs?

2.3 Stochastic Focusing

The first two sections of this chapter primarily involved the interplay between nonlinearity
and stochasticity; this interplay lead to novel noise-induced dynamics, and dramatic
disagreement between the stochastic dynamics and the law of mass action predictions.
Next we illustrate a phenomenon that relies on nonlinearity and noise, as well as the
discrete nature of the underlying process.

Consider the stochastic reaction process given by

∅ k1−→ C
k2−→ B

k3−→ ∅, A + C
k4−→ A, ∅ k5−→ A

k6−→ ∅. (2.7)

The only second order or higher reaction in the process (2.7) is the middle reaction, in
which C molecules are degraded by the presence of A molecules. A influences C, which in
turn regulates the production of B molecules, but A is not itself influenced by C. Hence A
is a pure production-degradation process of the type we previously studied. A influences
B indirectly via its impact on C.

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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We begin our analysis of this process by writing down the law of mass action deterministic
model for the process. As usual, we write the model for the concentrations (rather than
the absolute numbers) of the various chemical species:

d

dt
a(t) = k5 − k6a(t),

d

dt
b(t) = k2c(t) − k3b(t),

d

dt
c(t) = k1 − k2c(t) − k4a(t)c(t), (2.8)

where a(t) = A(t)/ν and so on.

We can immediately solve for the fixed point of this system,

a = k5

k6
, b = k2c

k3
, c = k1

k2 + k4a
,

which is stable for all reasonable parameter choices. We will consider a scenario in which
almost all of the parameters are fixed, but we will allow the production rate of A, k5, to
switch values as time progresses. Initially, we choose

k1 = 100, k2 = 1000, k3 = 0.01, k4 = 9900, k6 = 100,

and

k5(t) =

1000, t < 10,

500, t ≥ 10.

Hence if A and B denote the steady state number of molecules of species A and B
respectively, we expect that the system will switch steady states as the value of k5 switches.
In other words, based on the formulae above for a and b, we should have

A =

10, t < 10,

5, t ≥ 10,
B =

100, t < 10,

198, t ≥ 10,

for this parameter set.

Figure 2.7 shows 10 simulations of the process (2.7) with the solution to the deterministic
model (2.8) overlaid in black for comparison. There is excellent agreement between the
mean behaviour predicted by (2.8) for the average number of A molecules in the left
panel of Figure 2.7. However, we observe a large discrepancy between the number of
B molecules observed via the SSA and the mean number predicted by (2.8) after time
t = 10 in the right-hand panel of Figure 2.7. Species B is more sensitive to the change in
k5 than species A; this increased sensitivity must be somehow due to the way in which
this change is transmitted to B via C (whereas A experiences the change in k5 directly).
This phenomenon of enhanced sensitivity to noise is called stochastic focusing.

Firstly, we can understand why the agreement is so good between the two models for
the number of A molecules. The dynamics of A are a production-degradation process
(the number of A molecules is only impacted by the final pair of reactions in (2.7)) and
thus we know from Chapter 1 that the stochastic mean of A, MA, obeys the evolution
equation

d

dt
MA(t) = k5ν − k6MA.
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Figure 2.7: Left: Dynamics of the number of A molecules versus time. Right: Dynamics of the
number of B molecules versus time.

Hence the long run stochastic mean, MA,s, is given by

MA,s = k5ν

k6
,

and so for our parameter set, we expect to observe

MA,s =

10, t < 10,

5, t ≥ 10,

which is exactly as shown in the left-hand panel of Figure 2.7. To show that the stochastic
fluctuations of A about the mean value MA,s are an essential component of the stochastic
focusing phenomenon we observed above, we make A(t) a deterministic process equal to
its mean value, i.e. let

A(t) =

10, t < 10,

5, t ≥ 10.
(2.9)

Our deterministic model now becomes
d

dt
b(t) = k2c(t) − k3b(t),

d

dt
c(t) = k1 − k2c(t) − k4a(t)c(t), (2.10)

with a(t) = A(t)/ν where A(t) is given by the formula (2.9). Thus the species B and C
are still stochastic processes but take A(t) as deterministic input. The result of simulating
this new process is shown in Figure 2.8 with the solution to (2.10) overlaid in black.

As expected, we no longer observe stochastic focusing as the stochastic dynamics now
agree very well with the predictions of the deterministic model, confirming that the
fluctuations in A are an indispensable aspect of the focusing phenomenon. Moreover, the
equations (2.10) are linear and so it can be shown that they are the exact equations for
the stochastic means of B and C. Intuitively, we have essentially replaced the 2nd order
(nonlinear) reaction in the original process (2.7) with the first order (linear) reaction

C
k4A(t)−−−→ ∅.
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Figure 2.8: Left: The number of A molecules versus time as given by the formula (2.9). Right:
Dynamics of the number of B molecules versus time.

The fluctuations in A and the nonlinear nature of the reaction between A and C are
necessary but not sufficient for stochastic focusing. The final ingredient that causes the
focusing phenomenon is the discrete nature of the process. In particular, the fact that the
number of molecules of C is extremely low in our chosen parameter regime. The average
number of C molecules predicted by the law of mass action at steady state is given by

Cs =

0.001, t < 10,

0.00198, t ≥ 10.

Thus we can no longer even interpret Cs as a number of molecules. In Figure 2.9 we
simulate the system with the original parameter set once more and observe the dynamics
of the C component. The number of C molecules jumps between zero and one, meaning
that sometimes there are no C molecules present to produce B molecules. The presence
or absence of C is of course set by the fluctuations in A.
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Figure 2.9: Dynamics of the number of C molecules versus time.

To demonstrate that this low number of C molecules is essential for stochastic focusing to
occur we can change the system parameters to ensure a high average level of C molecules.
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We choose
k1 = 100, k2 = 0.1, k3 = 0.01, k4 = 0.99, k6 = 100,

and this shifts the steady state prediction for Cs to

Cs =

10, t < 10,

19.8, t ≥ 10.

The stochastic and deterministic dynamics for this new parameter set are shown in Figure
2.10. The average level of C is now much higher and there is now very good agreement
between the mass action prediction and the stochastic dynamics of the number of B
molecules, i.e. we no longer observe stochastic focusing.
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Figure 2.10: Dynamics of the number of A, B and C molecules versus time.

To briefly summarize our analysis of the process (2.7) and the stochastic focusing phe-
nomenon thus far:

• Nonlinearity (higher order reactions) are a necessary component for stochastic fo-
cusing (i.e. the reaction A + C → A in this example),

• Fluctuations (noise) are an essential component of stochastic focusing,

• Small numbers of molecules in higher order reactions may amplify noise/fluctuations
to cause stochastic focusing.

Finally, we will derive a more sophisticated deterministic approximation of the process
(2.7) that will allow us to analytically check if a specific system is expected to exhibit
stochastic focusing.

Since A(t) is a production-degradation process, we know that its stationary distribution
is given by

ϕA(n) = 1
n!

(MA,s)ne−MA,s , where MA,s = k5

k6

i.e. A(t) is approximately Poisson distributed with parameter k5/k6 at large times. Next
suppose that k4 � k6 so that C evolves on a much faster time scale than A; this allows
us to assume that A(t) is approximately at steady state with respect to C and hence we
can assume A(t) is given by the Poisson distribution above.

If A(t) = n at a given time, then C is essentially subject to the reaction dynamics:

∅ k1−→ C
k2+k4n−−−−→ ∅,



2.3 Stochastic Focusing 43

where write the ∅ symbol on the right as we choose not to distinguish between C molecules
that are degraded and those that become molecules of B; from the perspective of tracking
the number of C molecules, these two fates are equivalent. In other words, C is also a
production-degradation process and thus we can write down its stationary distribution
exactly as we did for A. Therefore

ϕC,n(m) = (µn)m

m!
e−µn , where µn = k1ν

k2 + nk4/ν
.

Note that this stationary distribution for C (i.e. the probability that C(t) = m for t
large) is dependent on the value of A(t) = n and can thus be thought of as a conditional
stationary distribution where we have conditioned on the value of A.

We saw above that stochastic focusing only takes place when the average value of C is
much less than 1 and so we want to focus our approximation on the case µn � 1. In this
limit, the Poisson distribution for the behaviour of C tells us that

P[1 C molecule present | A(t) = n] = ϕC,n(1) ≈ µn,

We can then estimate that the average probability of 1 molecule C being present is given
by

∞∑
n=0

µnϕA(n) =
∞∑

n=0

k1ν

k2 + nk4/ν

1
n!

(MA,s)ne−MA,s , (2.11)

where MA,s is the predicted steady-state value of A(t) given above. The formula (2.11)
takes into account the small number of C particles as well as the fluctuations in A since
we have used the stationary distribution of A in the averaging.

In contrast to the formula (2.11), the law of mass action predicts that the average number
of C particles will be

k1ν

k2 + MA,sk4/ν
. (2.12)

This formula neglects the fluctuations in A by simply using its mean value and also
doesn’t account for the small number of C molecules in any way. To check for potential
stochastic focusing, we can check for substantial disagreement between the predictions
for the number of C molecules between the formulae (2.11) and (2.12).

Since B depends linearly on C (i.e. through only a first order reaction), we can estimate
the average number of B molecules even for low copy numbers of C using formula (2.11)
by simply multiplying by k2/k3. If we evaluate these formulae with our original parameter
set (which exhibited stochastic focusing), we obtain the estimates

MB,s =

113.1, t < 10,

316.7, t ≥ 10,

which predict exactly the B molecule dynamics observed in Figure 2.7.
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Information

Stochastic focusing is of particular relevance in gene regulatory networks where
noisy signals are filtered through complex interaction networks, often with very
low copy numbers of specific genes present. If you want to read more about how
this phenomenon can be studied mathematically, and applied to understand the
dynamics of gene networks, the seminal paper on this topic by Paulsson, Berg,
and Ehrenberg is the place to start!

Paulsson, J., Berg, O. G., & Ehrenberg, M. (2000). Stochastic focusing: fluctuation-
enhanced sensitivity of intracellular regulation. Proceedings of the National
Academy of Sciences, 97(13), 7148-7153.



CHAPTER 3

Stochastic Differential Equations

In this chapter we introduce a new class of continuous-time continuous-state stochastic
processes that are commonly used for modelling in mathematical biology. Besides being
of independent interest, this class of processes will offer more analytic tractability than
the chemical reaction processes of the first two chapters of the course. As we have seen
in examples and problem classes, analytic calculations for chemical reactions processes
with many species and reactions, particularly higher-order reactions, quickly become im-
possible with just pen and paper! One advantage of these processes is that we can use
them to approximate chemical reactions processes and thereby study the complex noise-
induced phenomena of Chapter 2 in more detail. The new stochastic processes we intro-
duce will have dynamics described by so-called stochastic differential equations (SDEs),
which we can think of as generalizations of ordinary differential equations with random
noise added. Instead of a fully rigorous treatment of SDEs, which is an entire course
in its own right, we will proceed by discretising time and introducing a “computational
definition” of SDEs that gives us the appropriate intuition, enables basic calculations and
allows us to perform numerical simulations that produce the correct dynamics.

3.1 Introduction to SDEs

Consider the ordinary differential equation

d

dt
x(t) = f(x(t)), t > 0, x(0) = x0. (3.1)

We can also write (3.1) in the form

dx(t) = f(x(t)) dt,

where we interpret dx as an increment in x and dt as a (small) increment in time. In this
context, we mean dx(t) ≈ x(t + dt) − x(t) and this naturally leads to the discretisation
of the ODE (3.1),

x(t + ∆t) = x(t) + f(x(t))∆t, (3.2)
where we choose ∆t > 0 as the discretisation parameter. Hence, given the initial condition,
we can use this discretisation to numerically approximate the solution to (3.1) by stepping
forward in time in steps of ∆t (the forward Euler scheme). If f is sufficiently smooth and

45
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we choose ∆t sufficiently small, we obtain a good approximation and if we let ∆t ↓ 0,
we recover back the differential equation (3.1) exactly (formally, the scheme is first order
convergent in ∆t).

We could think of (3.2) as a discrete time stochastic process. However, as stated, it is
totally deterministic as there is no source of randomness... but we could add some! For
example, we could write

x(t + ∆t) = x(t) + f(x(t))∆t + G(t),

where G(t) is some stochastic process. For reasons that will become clear presently (and
some others that won’t), we need to insist on more structure than this; we instead choose
to extend (3.2) to processes of the form:

X(t + ∆t) = X(t) + f(X(t))∆t + g(X(t))
√

∆t ξ, (3.3)

where ξ is a normally distributed random variable with mean 0 and variance 1. Every
time we take a step ∆t forward in time, we draw a new realisation of ξ, so we really
have a discrete collection of standard normal random variables generating the “noise” in
the process (3.3). Fortunately, all modern programming languages can generate normal
random variables and hence this makes processes such as (3.3) straightforward to simulate
on a computer. Note that if g ≡ 0, then (3.3) reduces exactly to (3.2). If g is in some
sense small, we can also expect that the dynamics of X will often closely approximate
those of the solution to (3.2) (although there will be notable exceptions to this intuition!).
Finally, when we write (3.3), we typically restrict t to the discrete set {∆t, 2∆t, . . . } and
we can interpolate linearly between these points if we want to know the value of X(t)
between time points.

We will refer to equation (3.3) as our computational definition of stochastic differential
equations (SDEs).

The SDE (3.3) is more often expressed in the form:

dX(t) = f(X(t)) dt + g(X(t)) dW (t), (3.4)

where W (t) is a process whose increments, i.e. dW (t), are normally distributed. In
fact, both (3.3) and (3.4) are formal representations of the process X(t). Rigorously, the
equation describing the dynamics of X(t) is actually the integral equation

X(t) = X(0) +
∫ t

0
f(X(s)) ds +

∫ t

0
g(X(s)) dW (s), (3.5)

which can be formally obtained by integrating (3.4). We can think of (3.5) as equivalent
to writing the ODE (3.1) as x(t) = x(0) +

∫ t
0 f(x(s)) ds by simply integrating across with

respect to t. The final term on the right-hand side of (3.5) is a technically a “stochastic
integral” and defining such an object rigorously requires developing a whole new theory
of integration (which is well beyond the scope of this course). In numerical analysis terms,
equation (3.3) is referred to as the Euler-Maruyama scheme for discretising (3.5).

You don’t need to worry about the details of (3.5) but it is good to be aware of as you
may see the same SDE written in different ways in other contexts!
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We can immediately write down an SSA for (3.3):

At time t = 0, set X(0), then:

1 Generate ξ ∼ N(0, 1).

2 Set
X(t + ∆t) = X(t) + f(X(t))∆t + g(X(t))

√
∆t ξ,

and set t = t + ∆t and go back to 1 .

Example 1: Choose X(0) = 0, f ≡ 0 and g ≡ 1. Then (3.3) reads:

X(t + ∆t) = X(t) +
√

∆t ξ. (3.6)

Suppose M(t) = E[X(t)] and V (t) = Var[X(t)]. We can then calculate as follows using
our computational definition:

M(t + ∆t) = E[X(t)] + E
[√

∆t ξ
]

= M(t).

Since X(0) = 0, M(0) = 0 and thus M(t) = 0 for all t ≥ 0. Similarly, we have

V (t + ∆t) = E
[
X(t + ∆t)2

]
− M(t + ∆t)2

= E
[
X(t) +

√
∆t ξ)2

]
= E[X(t)2] + 2

√
∆tE[X(t)]E[ξ] + ∆tE[ξ2]

= E[X(t)2] + ∆t

= V (t) + ∆t.

Since V (0) = 0, V (t) = t for all t ≥ 0. In other words, the variance of the process
(3.6) scales linearly with time. This is a crucial aspect of our choice in adding the noise
term when we wrote down (3.3). Moreover, this choice has ensured that both the mean
and variance of the process are independent of the time step, suggesting that this was
somehow the “right” scaling to choose for the noise term. In fact, we can show that all
moments of the process (3.6), i.e. E[X(t)k], are independent of step size ∆t.

Sample paths of the process computed via the SSA above are shown in Figure 3.1 (left
panel). We observe that these paths are quite centred around zero with larger fluctuations
away from zero as time increases, as expected given that variance scales linearly with time
for the process (3.6).

Example 2: We can consider higher dimensional examples of SDEs, such as the process

X(t + dt) = X(t) +
√

2D dWx,

Y (t + dt) = Y (t) +
√

2D dWy, (3.7)
Z(t + dt) = Z(t) +

√
2D dWz,
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where D > 0 is a parameter and Wx, Wy and Wz are three independent sources of noise.
For simulations, as usual, we replace dWx by

√
∆t ξ where ξ ∼ N(0, 1) at each time step.

The process (3.7) may be interpreted as a stochastic model for a diffusing particle in 3
spatial dimensions, with D > 0 denoting the diffusion coefficient. The right-hand panel
of Figure 3.1 below shows some sample paths of (3.7) using the SSA outlined above with
(X(0), Y (0), Z(0)) = (0, 0, 0) for all simulations. The end point of each simulation is
marked with a black dot and as we follow each path, at least qualitatively, we observe
what we expect to from a particle diffusing freely in an aqueous medium.
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Figure 3.1: Left: Sample paths of the SDE (3.6). Right: Sample paths of the process (3.7)
projected onto the X − Y plane. Parameters: D = 0.0001.

Have a go!

Open the course Github page and try playing with the MATLAB scripts

CH3_example_1.m and CH3_example_2.m

to see how the dynamics vary as you increase the discretisation parameter and the
diffusion coefficient.

Example 3: Choose f ≡ 1 and g ≡ 1 so that (3.3) reads

X(t + ∆t) = X(t) + ∆t +
√

∆t ξ = X(t) + dW (t), X(0) = 0. (3.8)

In this case, we can compute as in Example 1 to show that

M(t + ∆t) = M(t) + ∆t =⇒ M(t) = t,

using that M(0) = 0 once more.

Figure 3.2 (left) shows some sample paths of the process (3.8). The black dashed line
denotes the function M(t) = t and we see that all of the sample paths roughly follow this
trend line. This trend line is soley set by the function f ≡ 1 which is typically referred
to as the “drift” coefficient of the SDE. The function g is called the “diffusion” coefficient
and controls the noise level in the process.

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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Example 4: For our final example, choose f(x) = −k1x
3 +k2x

2 −k3x+k4 and g(x) = k5.

Hence we have the SDE

X(t + ∆t) = X(t) +
(
−k1X(t)3 + k2X(t)2 − k3X(t) + k4

)
∆t + k5

√
∆t ξ. (3.9)

If we set k5 = 0, (3.9) is exactly the ODE we studied in Section 2.1 when we used the law
of mass action to derive a deterministic model for the bistable chemical reaction process
(2.1). The mass action model for the process (2.1) was given by

d

dt
a(t) = −k1a(t)3 + k2a(t)2 − k3a(t) + k4, t ≥ 0. (3.10)

If we choose reaction rate parameters

k1 = 0.001, k2 = 0.75, k3 = 165, k4 = 10000,

then the ODE (3.10) has stable steady states A1 = 100 and A3 = 400, and an intermediate
unstable steady state A2 = 250. We saw that the solution to the ODE is not a good model
or approximation of the bistable chemical reaction because it cannot switch between the
stable fixed points, as the stochastic reaction process can.

In Figure 3.2 we show simulations of the process (3.9) with k5 = 200 and observe that the
solution to the SDE can also switch between the stable fixed points of the deterministic
model. This illustrates that SDEs offer the potential of better qualitatively matching the
dynamics of stochastic reaction processes. Moreoever, we can tune the noise level in the
SDE to understand how much noise is required to induce switching dynamics and, as
we will see presently, we can use the analytic tractability of the SDEs to understand the
mean switching time in chemical reaction systems.
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Figure 3.2: Left: Sample paths of the SDE (3.8). Right: Sample path of the process (3.9) and
solutions to the corresponding ODE with zero noise.

Have a go!

Open the course Github page and use the MATLAB script

CH3_example_4.m

to investigate how the switching dynamics are impacted by the noise level in Ex-
ample 4 by adjusting the parameter k5.

https://github.com/patterd2/MATH4411_Adv_Math_Bio
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3.2 The Fokker-Planck Equation

3.2.1 Overview

When we studied chemical reaction processes, we derived the chemical master equations,
which can be solved to yield the probability mass function of the process at each point in
time. Similarly, if the process {X(t) : t ≥ 0} solves (3.3) and we denote its probability
density function by p(x, t), we can derive an evolution equation for p(x, t).

Since p(x, t) is a PDF, we must have∫
R

p(x, t) dx = 1,

and we have the usual intuitive interpretation of p(x, t) as a proxy for the probability
that X(t) is near x at time t, i.e.

P[X(t) ∈ [x, +dx]] ≈ p(x, t) dx.

We will show that p(x, t) solves the linear second-order PDE:

∂

∂t
p(x, t) = ∂2

∂x2

(1
2

g2(x)p(x, t)
)

− ∂

∂x
(f(x)p(x, t)) , t > 0. (3.11)

Equation (3.11) is typically called the Fokker-Planck equation across most fields, although
it can also be referred to as the Kolmogorov forward equation or the Smoluchowski
equation.

As an example, consider the case when f ≡ 0 and g ≡
√

2D for some D > 0. Then (3.11)
reads

∂

∂t
p(x, t) = D

∂2

∂x2 p(x, t).

In other words, with no drift coefficient and constant diffusion, the Fokker-Planck equa-
tion is just the heat equation. Therefore the solution in this case is

p(x, t) = 1√
2πtD

e−x2/2Dt, t ≥ 0,

if we suppose that the initial condition for the process is X(0) = 0; this initial condition
corresponds to solving the PDE with the initial distribution being a Dirac delta function
(i.e. all mass is at x = 0 for p(x, 0)). Figure 3.3 (left) shows the solution to the Fokker-
Planck equation for this example, along with the estimated PDF from simulations at time
t = 1. As expected, agreement between the formula and the SSA approach is very close.

When the drift and diffusion coefficients, f and g, are independent of time, we can char-
acterize the long-term behaviour of the SDE (3.3) in terms of the stationary distribution
of the process, ps(x), i.e.

ps(x) = lim
t→∞

p(x, t).

It follows that ps(x) obeys the steady-state version of the PDE (3.11):

0 = 1
2

d2

dx2

(
g2(x)ps(x)

)
− d

dx
(f(x)ps(x)). (3.12)
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In problem classes, we showed that the solution to (3.12) is formally given by

ps(x) = C

g2(x)
exp

(∫ x

0

2f(y)
g2(y)

dy

)
, (3.13)

where the normalisation constant C > 0 is given by

C =
(∫

R

1
g2(x)

exp
(∫ x

0
2f(y)/g2(y) dy

)
dx

)−1

.
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Figure 3.3: Left: Comparison of the Fokker-Planck solution and estimated probability density
with f ≡ 0 and g ≡ 1 at time t = 1. Right: Estimated stationary distribution from
simulations and stationary distribution obtained via the Fokker-Planck equation for
the bistable process (3.9). [Codes: CH3_FP1.m, CH3_FP2.m]

We saw in our first example above that when drift and diffusion are constant, we obtain
a Normal distribution for the process at all times. However, for different choices, both
the finite-time and stationary distributions generated can be quite far from Normal. For
example, Figure 3.3 (right) shows a comparison of the stationary distribution for the
bistable process (3.9) from the last section obtained via both simulations and solving the
Fokker-Planck equation using the formula (3.13). Both approaches produce a bimodal
distribution in this case, reflecting the stochastic switching between the two stable states
at x = 100 and x = 400 (see Figure 3.2).

3.2.2 Derivation

To derive the Fokker-Planck equation (3.11), we begin by defining the conditional prob-
ability density p(x, t | y, s), which is approximately the probability that X(t) ∈ [x, x+dx]
given that X(s) = y for s < t.

Now consider the value of X(t+∆t) for some ∆t > 0. We can divide the interval [s, t+∆t]
into the disjoint intervals [s, t] and (t, t + ∆t]. If we want to arrive at X(t + ∆t) = z, we
can think of all possible paths through an intermediate point X(t) = x. In other words,
we may write

p(z, t + ∆t | y, s) =
∫
R

p(z, t + ∆t | x, t) p(x, t | y, s) dx, s < t. (3.14)
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Equation (3.14) is called the Chapman-Kolmogorov equation and is valid for all ∆t > 0,
even though our goal here will be to later let ∆t ↓ 0 in order to obtain an evolution
equation for p(x, t | y, s).

Next, to alleviate potential regularity issues, we multiply (3.14) across by a smooth test
function ϕ(z) and integrate over z to obtain:∫

R
p(z, t + ∆t | y, s)ϕ(z) dz =

∫
R

[∫
R

p(z, t + ∆t | x, t)ϕ(z)dz
]

p(x, t | y, s) dx,

which in the long run will be less confusing to rewrite as∫
R

p(x, t + ∆t | y, s)ϕ(x) dx =
∫
R

[∫
R

p(z, t + ∆t | x, t)ϕ(z)dz
]

p(x, t | y, s) dx, (3.15)

where we have simply changed the integration variable on the left-hand side. Now Taylor
expand the (smooth test function) ϕ about the point z = x on the right-hand side of
(3.15):

∫
R

[∫
R

p(z, t + ∆t | x, t)ϕ(z)dz
]

p(x, t | y, s) dx =∫
R

∫
R

p(z, t + ∆t | x, t)
{
ϕ(x) + ϕ′(x)(z − x) + ϕ′′(x) (z−x)2

2 + o((z − x)2)
}

p(x, t | y, s) dx.

(3.16)

Now we need to tackle some of the integrals on the right-hand side. Happily, we can
rewrite these as (conditional) expectations and compute them using the computational
definition of the underlying SDE, i.e. (3.3). Firstly, we have∫

R
(z − x)p(z, t + ∆t | x, t) dz = E [X(t + ∆t) − x | X(t) = x]

= E
[
f(x)∆t + g(x)

√
∆t ξ

]
= f(x)∆t. (3.17)

Similarly, we can compute the second integral as:∫
R
(z − x)2p(z, t + ∆t | x, t) dz = E

[
(X(t + ∆t) − x)2 | X(t) = x

]
= E

[(
f(x)∆t + g(x)

√
∆t ξ

)2
]

= E
[
f 2(x)∆t2 + 2f(x)g(x)(∆t)3/2 + ξ2g2(x)∆t

]
= g2(x)∆t + o(∆t2). (3.18)

We have truncated at order ∆t since we intend to take ∆t ↓ 0 later and these higher
order terms will vanish; this is also why we truncated our expansion of ϕ at second order.
Returning to (3.15) with these estimates and plugging them in yields:
∫
R

p(x, t + ∆t | y, s)ϕ(x) dx =∫
R

{
ϕ(x) + ϕ′(x)f(x)∆t + ϕ′′(x)g(x)2

2
∆t

}
p(x, t | y, s) dx + o(∆t2).
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With some rearrangement and division by ∆t on both sides, we thus have

∫
R

p(x, t + ∆t | y, s) − p(x, t | y, s)
∆t

ϕ(x) dx =∫
R

{
ϕ′(x)f(x) + ϕ′′(x)g(x)2

2

}
p(x, t | y, s) dx + o(∆t). (3.19)

The integrals on the right-hand side of (3.19) can be simplified using integration by parts.
Under mild regularity assumptions on f and g, and noting that lim|x|→∞ p(x, t | y, s) = 0,
we obtain ∫

R
ϕ′(x)f(x)p(x, t | y, s) dx = −

∫
R

ϕ(x) ∂

∂x
(f(x)p(x, t | y, s)) dx∫

R
ϕ′′(x)g(x)2

2
p(x, t | y, s) dx =

∫
R

ϕ(x) ∂2

∂x2

(
g2(x)

2
p(x, t | y, s)

)
dx.

Using these identities in (3.19) and letting ∆t ↓ 0 thus yields

∫
R

ϕ(x) ∂

∂t
p(x, t | y, s) dx =∫

R
ϕ(x)

{
− ∂

∂x
(f(x)p(x, t | y, s)) + ∂2

∂x2

(
g2(x)

2
p(x, t | y, s)

)}
dx,

or equivalently,
∫
R

ϕ(x)
{

∂

∂t
p(x, t | y, s) − ∂

∂x
(f(x)p(x, t | y, s)) + ∂2

∂x2

(
g2(x)

2
p(x, t | y, s)

)}
dx = 0.

The only way this equality can be satisfied for an arbitrary test function ϕ is if the
integrand is identically zero, i.e.

∂

∂t
p(x, t | y, s) = − ∂

∂x
(f(x)p(x, t | y, s)) + ∂2

∂x2

(
g2(x)

2
p(x, t | y, s)

)
. (3.20)

The PDE (3.20) is valid for any time s < t and any y but for the initial value problem
for the SDE (3.3), we simply want the case s = 0 and y = x0. Thus we can let p(x, t) =
p(x, t | x0, 0) and specialize (3.20) to obtain

∂

∂t
p(x, t) = − ∂

∂x
(f(x)p(x, t)) + ∂2

∂x2

(
g2(x)

2
p(x, t)

)
,

which is exactly the claimed Fokker-Planck equation (3.11).

3.2.3 Boundary conditions

In the previous section we derived the Fokker-Planck equation under the assumption that
the underlying process X took values on all of R. In effect, there is no boundary and
hence there is no need for a boundary condition to solve (3.11) in this scenario.
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In many practical situations we want to restrict the set of values that the process X can
attain and this has natural implications for the Fokker-Planck equations of the process.
For example, if we are modelling the positions of particles or cells in a Petri dish, then
the domain of the cell positions is probably best modelled as a compact subset of R2. We
must then decide what happens to cells when they come into contact with the boundary
of the dish.

Suppose that a particle moves in 1 dimension and its position must remain above the
level x = 0. We can impose a “reflecting” boundary condition at x = 0 to achieve this,
i.e. the particle hits the boundary and is pushed back into the admissible domain (0, ∞).
If we are using the recurrence relation (3.3) to simulate the process, we can modify our
previous SSA for SDEs as follows to account for the addition of a reflecting boundary:

At time t = 0, set X(0), then:

1 Generate ξ ∼ N(0, 1).

2 Compute the possible value of X(t + ∆t):

X(t + ∆t) = X(t) + f(X(t))∆t + g(X(t))
√

∆t ξ,

3 If X(t + ∆t) ≥ 0, then we accept that value. If X(t + ∆t) < 0, then we instead
take

X(t + ∆t) = −X(t) − f(X(t))∆t − g(X(t))
√

∆t ξ.

Finally, set t = t + ∆t and go back to 1 .

In the “reflective step” in 3 above, we must have X(t) > 0. Thus if X(t + ∆) < 0 in
step 2 , we must have had

f(X(t))∆t + g(X(t))
√

∆t ξ < 0.

In the reflective step, we first reflect the process through zero by replacing X(t) by −X(t).
Then we add the positive increment −f(X(t))∆t − g(X(t))

√
∆t ξ to make the process

positive once more.

As an example, consider the SDE (3.3) with f(x) = −x and g ≡ 1 with initial condition
X(0) = 0. We can simulate a path of this process using our SSA with and without the
reflecting boundary condition to see the impact of the boundary on the process. To make
the comparison even more direct, we will use the same set of normal random variables
(ξ’s) for the noise terms. In the left-hand panel of Figure 3.4 we see how the paths of
the reflected and unreflected processes diverge as soon as they hit zero for the first time.
The reflected process (blue) hits zero numerous times but is blocked from crossing into
(−∞, 0), while the red process is unrestricted. We observe that both processes have the
same dynamics away from x = 0 since they share the same underlying noise process and
thus their increments are mostly the same (except for reflection events). The right-hand
panel of Figure 3.4 shows the estimated PDF of the reflected and unreflected processes at
time t = 10. As expected, the PDF of the reflected process is only supported on [0, ∞).
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Figure 3.4: Left: Samples path of X(t) and XR(t) with f(x) = −x and g ≡ 1 with identical
initial conditions and noise processes (i.e. the same random variables ξ). Right:
Estimated PDFs for X and XR at time t = 10. [Code: CH3_FP3_reflecting.m]

Figure 3.4 shows how significantly boundary conditions can change the solution to the
Fokker-Planck equation, this immediately begs the question: How does the reflecting
boundary condition impact the derivation of the corresponding Fokker-Planck equation?

Let pR(x, t | y, s) denote the conditional probability density function of a process XR

solving (3.3) subject to the reflecting boundary condition introduced above. The process
XR can no longer take on negative values with positive probability so pR(x, t | y, s) = 0 if
x < 0 or y < 0. The Chapman-Kolmogorov equation (3.14) then becomes

pR(z, t + ∆t | y, s) =
∫

[0,∞)
pR(z, t + ∆t | x, t) pR(x, t | y, s) dx, s < t. (3.21)

As before, we can multiply by a smooth test function ϕ and integrate to obtain:

∫
[0,∞)

pR(x, t + ∆t | y, s)ϕ(x) dx =
∫

[0,∞)

[∫
[0,∞)

pR(z, t + ∆t | x, t)ϕ(z)dz

]
pR(x, t | y, s) dx.

(3.22)
Next consider the unreflected process X, whose conditional density is denoted p(x, t | y, s),
and whose Fokker-Planck equation we derived in the previous section. We assume that
X solves the same SDE as XR. If x > 0, y > 0, then a path of X that goes from X(s) = y
to X(t) = −x, has the same probability as a path of the reflected process that goes from
XR(s) = y to XR(t) = x due to the symmetry of the reflection step. If our test function
ϕ is chosen to be an even function, we then have

∫
[0,∞)

pR(z, t + ∆t | x, t)ϕ(z)dz =
∫

[0,∞)
p(z, t + ∆t | x, t)ϕ(z)dz

+
∫

(−∞,0]
p(z, t + ∆t | x, t)ϕ(−z)dz

=
∫

[0,∞)
p(z, t + ∆t | x, t)ϕ(z)dz

+
∫

(−∞,0]
p(z, t + ∆t | x, t)ϕ(z)dz.
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Hence, we have∫
[0,∞)

pR(x, t + ∆t | y, s)ϕ(x) dx =
∫

[0,∞)

[∫
R

p(z, t + ∆t | x, t)ϕ(z)dz
]

pR(x, t | y, s) dx,

(3.23)
The inner integral involving p on the right-hand side of (3.23) is exactly the integral we
dealt with in the original derivation; we can once more Taylor expand ϕ about z = x,
simplify and let ∆t ↓ 0 to obtain∫

[0,∞)

∂

∂t
pR(x, t + ∆t | y, s)ϕ(x) dx =

∫
[0,∞)

[
ϕ′(x)f(x) + ϕ′′(x)g(x)2

2

]
pR(x, t | y, s) dx.

(3.24)

We again apply integration by parts to simplify the integrals on the right-hand side.
Doing so yields∫

[0,∞)
ϕ′(x)f(x)pR(x, t | y, s) dx = −

∫
[0,∞)

ϕ(x) ∂

∂x
(f(x)pR(x, t | y, s)) dx

+ ϕ(x)f(x) pR(x, t | y, s)|x=0,∫
[0,∞)

ϕ′′(x)g(x)2

2
pR(x, t | y, s) dx =

∫
[0,∞)

ϕ(x) ∂2

∂x2

(
g2(x)

2
pR(x, t | y, s)

)
dx

− ϕ(x)
[

∂

∂x

(
g2(x)

2
pR(x, t | y, s)

)]
x=0

,

where we used the fact that ϕ′(0) = 0 because ϕ is an even function. Therefore, for an
arbitrary test function ϕ, we have∫

[0,∞)

∂

∂t
pR(x, t + ∆t | y, s)ϕ(x) dx = −

∫
[0,∞)

ϕ(x) ∂

∂x
(f(x)pR(x, t | y, s)) dx

+
∫

[0,∞)
ϕ(x) ∂2

∂x2

(
g2(x)

2
pR(x, t | y, s)

)
dx

+
[
ϕ(x)f(x) pR(x, t | y, s) − ϕ(x) ∂

∂x

(
g2(x)

2
pR(x, t | y, s)

)]
x=0

The only way this equation can hold for an arbitrary ϕ is if the integrands agree, i.e. pR

obeys the standard Fokker-Planck equation, and, since ϕ(0) is arbitrary, we also need the
last term on the right-hand side to vanish regardless of the value of ϕ(0), i.e.

f(x) pR(x, t | y, s) − ∂

∂x

(
g2(x)

2
pR(x, t | y, s)

)
= 0 at x = 0. (3.25)

Equation (3.25) is thus the condition that pR must satisfy at x = 0 in order to take into
account the reflecting boundary condition on the dynamics of the underlying stochastic
process XR. In fact, we can interpret condition (3.25) as a no-flux boundary condition
at x = 0 as follows: We can write the Fokker-Planck equation (3.11) in the form

∂

∂t
pR(x, t | y, s) + ∂Q

∂x
= 0

where the probability flux Q is given by

Q(x) = f(x)pR(x, t | y, s) − ∂

∂x

(
g2(x)

2
pR(x, t | y, s)

)
.
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Condition (3.25) corresponds to taking Q(0) = 0, i.e. no flux at the boundary x = 0.

A reflecting boundary is not the only possible choice of boundary condition for the Fokker-
Planck equation. For example, we could decide to have an “absorbing boundary” in which
we terminate trajectories that reach the boundary. This would correspond to ignoring
cells which touch the edge of the Petri dish during an experiment. If we set an absorbing
boundary at x = 0, then the boundary condition for the Fokker-Planck equation is
p(0, t | y, s) = 0, i.e. there is no chance that a particle can reach x = 0. This means that
the integral

∫
(0,∞) p(x, t) dx is equal to 1 at time t = 0 but its values will decay in time

and obey

lim
t→∞

∫
(0,∞)

p(x, t) dx = 0

since all trajectories will eventually hit x = 0 and be absorbed if we wait long enough.

Our choice of boundaries is typically motivated by the application we have in mind for the
underlying process and other boundary conditions can be implemented using approaches
similar to that employed above for the reflecting case.

3.3 The Kolmogorov Backward Equation

3.3.1 Derivation

The Fokker-Planck equation (3.11) tells us how the probability density function of the
process changes as time evolves, i.e. how the probability of being in a certain state
changes with time. In some situations, we actually want to know how the probability
of ending up in a certain state depends on where the process starts, a question that
the Fokker-Planck equation is not designed to answer. Instead, for this question, we
need the so-called Kolmogorov backward equation of the process. If we consider the
conditional density function p(x, t | y, s), then the Fokker-Planck equation tells us what
happens when we vary x, t and the Kolmogorov backward equations gives us information
about what happens when y, s are varied. Moreover, we can use the backward equation to
derive information about the mean hitting times of states depending on a given starting
position and this will greatly improve our understanding of the noise-induced switching
phenomenon we have seen in previous examples.

To derive the Kolmogorov backward equation, we begin by considering the Chapman-
Kolmogorov equation with a relabelling of the variables:

p(x, t | y, s − ∆s) =
∫
R

p(x, t | z, s) p(z, s | y, s − ∆s) dz. (3.26)

This equation is valid for any ∆s > 0 and our goal will be to take the limit ∆s ↓ 0
presently. Previously we introduced a smooth test function at this point (for regularity
purposes) but this will be a more formal derivation. Thus we will take a rather risky
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Taylor expansion of p(x, t | z, s) about the point z = y to obtain

p(x, t | z, s) = p(x, t | y, s) + (z − y) ∂

∂y
p(x, t | y, s) + (z − y)2

2
∂2

∂y2 p(x, t | y, s)

+ o((z − y)2).

Substituting this expression into the right-hand side of (3.26) yields

p(x, t | y, s − ∆s) = p(x, t | y, s)
∫
R

p(z, s | y, s − ∆s) dz

+ ∂

∂y
p(x, t | y, s)

∫
R
(z − y)p(z, s | y, s − ∆s) dz

+ ∂2

∂y2 p(x, t | y, s)
∫
R

(z − y)2

2
p(z, s | y, s − ∆s) dz + o(∆s2).

The first integral on the right-hand side of this equation is 1 because it is the integral of
a PDF. The second and third integrals are the mean and variance of the process and are
dealt with as in the derivation of the Fokker-Planck equation (see equations (3.17) and
(3.18)). Simplifying these integrals thus yields

p(x, t | y, s − ∆s) = p(x, t | y, s) + f(y) ∂

∂y
p(x, t | y, s)∆s

+ g(y)2

2
∂2

∂y2 p(x, t | y, s)∆s + o(∆s2).

Rearranging, dividing across by ∆s and letting ∆s ↓ 0 gives us the Kolmogorov backward
equation

− ∂

∂s
p(x, t | y, s) = f(y) ∂

∂y
p(x, t | y, s) + g(y)2

2
∂2

∂y2 p(x, t | y, s). (3.27)

If we define the function d(y) = g2(y)/2, then we can write the Fokker-Planck equation
more compactly as

∂

∂t
p(x, t) = ∂2

∂x2 (d(x)p(x, t)) − ∂

∂x
(f(x)p(x, t))

and the Kolmogorov backward equation as

− ∂

∂s
p(x, t | y, s) = f(y) ∂

∂y
p(x, t | y, s) + d(y) ∂2

∂y2 p(x, t | y, s).

The stationary distribution from solving the steady-state version of the Fokker-Planck
equation is then given by

ps(x) = C

d(x)
exp

(∫ x

0
f(y)/d(y) dy

)
, C > 0.



3.3 The Kolmogorov Backward Equation 59

3.3.2 Application to mean hitting times

Consider once more the SDE from Example 4 earlier in this chapter:

X(t + ∆t) = X(t) +
(
−k1X(t)3 + k2X(t)2 − k3X(t) + k4

)
∆t + k5

√
∆t ξ.

Using the same parameter set as before, we know that this SDE can exhibit noise-induced
switching between the stable steady states xs1 = 100 and xs2 = 400 (see Figure 3.2 right).
There is also an unstable steady state xu = 250. Our goal will be to estimate how long
on average it takes the process to hit the unstable steady state xu given that it starts
below that point. To this end, define the probability h(y, t) by

h(y, t) = P [X(t′) ∈ (−∞, xu) ∀t′ < t, X(0) = y < xu] .

In other words, h(y, t) is the probability that the process stays below xu before time
t, given that it started at position y. The quantity p(x, t | y, 0)dx is approximately the
probability that a particle is at position y at time zero and in the interval [x, x + dx] at
time t; this density obeys the Fokker-Planck (FP) and Kolmogorov backward equations
(KBEs). If we supplement the FP and KBEs with the boundary conditions

p(xu, t | y, s) = p(x, t | xu, s) = 0, s < t, x < xu,

then we ensure that p(x, t | y, s) = 0 if y ≥ xu or x ≥ xu. In other words, with these
boundary conditions, paths of the particle that cross the level xu before time t have
probability zero. Hence can write the desired probability as

h(y, t) =
∫ xu

−∞
p(x, t | y, 0) dx,

where p(x, t | y, 0) dx is the probability that the process remains in (−∞, xu) and lies in
[x, x+dx] at time t, given that it started at y initially. Since f, g do not depend explicitly
on time, we can then shift time as follows in the expression for h:

h(y, t) =
∫ xu

−∞
p(x, 0 | y, −t) dx.

Similarly, shifting time in the Kolmogorov backward equation (s 7→ −t) yields:

∂

∂t
p(x, 0 | y, −t) = f(y) ∂

∂y
p(x, 0 | y, −t) + d(y) ∂2

∂y2 p(x, 0 | y, −t).

Integrating over x thus yields

∂

∂t
h(y, t) = f(y) ∂

∂y
h(y, t) + d(y) ∂2

∂y2 h(y, t). (3.28)

Define the hitting time of xu starting from y by

τ(y) = inf{t > 0 : X(t) = xu, X(0) = y},

and thus the average hitting time τ(y) is given by τ(y) = E[τ(y)]. Formally, we can
observe that

P[τ(y) = t] ≈ h(y, t) − h(y, t + dt) ≈ − ∂

∂t
h(y, t)dt.
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Next apply integration by parts to find that

τ(y) = −
∫ ∞

0
t

∂

∂t
h(y, t) dt =

∫ ∞

0
h(y, t) dt.

Next integrate (3.28) with respect to t and use the initial condition h(y, 0) = 1 to show
that

−1 = f(y) d

dy
τ(y) + d(y) d2

dy2 τ(y), y ∈ (−∞, xu). (3.29)

Note that limt→∞ h(y, t) = 0 because every trajectory will eventually cross xu if we wait
long enough. We need to impose some boundary conditions in order to solve (3.29). If
y = xu, then p(x, t | xu, s) = 0, implying that h(xu, t) = 0, which means that

τ(xu) = 0.

Next, if we start very far from xu, then the initial condition should have a negligible
impact on how long it takes to hit the level xu and thus we assume that

d

dy
τ(y)|y=−∞ = 0.

With these boundary conditions in hand, we can solve (3.29) to show that

τ(y) =
∫ xu

y

1
d(z)ps(z)

∫ z

−∞
ps(x) dx dz.

Now we can calculate, for example, how long it takes on average to hit xu starting from
the lower stable state, i.e

τ(xs1) =
∫ xu

xs1

1
d(z)ps(z)

∫ z

−∞
ps(x) dx dz.

Figure 3.5: Left: Paths of the SDE (3.9) with different values of ∆t. Right: Estimates of the
mean hitting time of the state xu = 250, τ(y), for different values of the initial
condition y. [Code: CH3_KBE_hitting.m plus associated .dat files]

Figure 3.5 (right) shows the results of computing the integral formula for τ above for dif-
ferent values of y and compares it to a simulation approach of estimating the hitting time
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over a large number of paths of the process. The left panel of Figure 3.5 demonstrates one
drawback or source of inaccuracy of the direct simulation approach, namely discretisation
error. The blue and red paths are essentially the same sample path but the blue path is
sampled using a smaller discretisation parameter and hence should be more accurate. We
observe that for this particular sample path, the red solution underestimates the hitting
time of the level xu = 250. We could take smaller and smaller step sizes for accuracy but
of course this will be computationally intensive and demonstrates the advantage of our
analytic formula for τ(y).

3.4 The Chemical Fokker-Planck Equation

Thus far we have seen that SDEs can be useful modelling tools in their own right and that
it is more analytically tractable to study certain problems for SDEs than it is for their
chemical reaction process counterparts. For example, we developed theory to estimate
mean hitting times of states for a general class of SDEs and applied this to the study of
systems with noise-induced switching between alternative stable states. We will conclude
this chapter by making a connection between SDEs and chemical reaction processes that
will allow us to apply our analytic tools for SDEs to reaction processes, thereby enabling
us to tackle some problems which were intractable up to now. Our approach will be
to approximate the chemical master equations of a reaction process by an appropriate
Fokker-Planck equation in the large molecule number regime; this approximation is the
so-called Chemical Fokker-Planck equation.

3.4.1 Derivation for production-degradation processes

Consider our old friend the single-species production degradation process:

A
k1−→ ∅, ∅ k2−→ A. (3.30)

In Chapter 1 we showed that the chemical master equations of the process (3.30) are
given by

d

dt
Pn(t) = k1(n + 1)Pn+1(t) − k1nPn(t) + k2νPn−1(t) − k2νPn(t), n ≥ 0, t ≥ 0.

Introducing the auxiliary functions

h1(n, t) = k1nPn(t), h2(n, t) = k2νPn(t),

we can rewrite the chemical master equations as

d

dt
Pn(t) = h1(n + 1, t) − h1(n, t) + h2(n − 1, t) − h2(n, t), n ≥ 0, t ≥ 0. (3.31)

The key to our approximation of (3.31) will be to assume that we can concentrate on
the case when the number of molecules of A, denoted by n, is large; justifying this
assumption would largely depend on the specific dynamics of the process in question.
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Consider a fixed large number ω such that n = ηω for some continuous variable η > 0
and set Pn(t) = P (η, t). Our auxiliary functions thus become

h1(η, t) = k1ηωP (η, t), h2(η, t) = k2νP (η, t)

and equation (3.31) now reads

∂

∂t
P (η, t) = h1

(
η + 1

ω
, t
)

− h1(η, t) + h2
(
η − 1

ω
, t
)

− h2(η, t), t ≥ 0. (3.32)

Given that ω is a large parameter, we can Taylor expand the right-hand side of (3.32) in
powers of ω about the point (η, t). The expansions of h1 and h2 will be:

h1
(
η + 1

ω
, t
)

≈ h1(η, t) + 1
ω

∂

∂η
h1(η, t) + 1

2ω2
∂2

∂η2 h1(η, t) + O(h1/ω3),

h2
(
η − 1

ω
, t
)

≈ h2(η, t) − 1
ω

∂

∂η
h2(η, t) + 1

2ω2
∂2

∂η2 h2(η, t) + O(h2/ω3).

Substituting these expansions into (3.32) and truncating at O(1/ω2) yields:

∂

∂t
P (η, t) = 1

ω

∂

∂η
h1(η, t) + 1

2ω2
∂2

∂η2 h1(η, t) − 1
ω

∂

∂η
h2(η, t) + 1

2ω2
∂2

∂η2 h2(η, t).

For brevity and notational convenience, we can let x = ηω to obtain the slightly more
pleasant expression

∂

∂t
P (x, t) = ∂

∂x
h1(x, t) + 1

2
∂2

∂x2 h1(x, t) − ∂

∂x
h2(x, t) + 1

2
∂2

∂x2 h2(x, t), (3.33)

while bearing in mind that this approximation is now only valid for large values of x by
dint of the relationship between n (molecule number) and x. Carefully tracing through
our latest change of variables, we have

h1(x, t) = k1xP (x, t), h2(x, t) = k2νP (x, t),

and hence (3.33) can be rewritten as

∂

∂t
P (x, t) = − ∂

∂x
(f(x)P (x, t)) + ∂2

∂x2 (d(x)P (x, t)) , (3.34)

where, in our usual SDE/Fokker-Planck notation, we have

f(x) = −k1x + k2ν, d(x) = g2(x)
2

= k1x + k2ν

2
. (3.35)

Thus (3.34), together with the coefficients from (3.35), are the chemical Fokker-Planck
equation for the process (3.30). The solution P (x, t) of (3.34) gives us the approximate
probability that we will have roughly x molecules of A present at time t.

At least for large values of x (i.e. large numbers of molecules of A), we can use (3.34)
to answer questions about the process (3.30). For example, we can solve the steady-
state version of (3.34) to readily obtain an approximate stationary distribution for the



3.4 The Chemical Fokker-Planck Equation 63

production-degradation process. Doing so yields

Ps(x) = C

d(x)
exp

(∫ x

0
f(y)/d(y) dy

)
= 2C

k1x + k2ν
exp

(
2
∫ x

0

−k1y + k2ν

k1y + k2ν
dy

)

= 2C

k1x + k2ν
exp

(
−2x + 4k2ν

∫ x

0

dy

k1y + k2ν

)

= 2C exp
(

−2x +
(

4k2ν

k1
− 1

)
log(k1x + k2ν) − 4k2ν

k1
log(k2ν)

)
, x > 0, C > 0.

(3.36)

The approximate stationary distribution (3.36) is only valid for x > 0 since x represents
molecules numbers in this formulation and thus the normalisation constant will be given
by

C = 1
2

[∫ ∞

0
exp

(
−2x +

(
4k2ν

k1
− 1

)
log(k1x + k2ν) − 4k2ν

k1
log(k2ν)

)
dx

]−1

.

Figure 3.6 (left) shows excellent agreement between the stationary distribution (3.36)
from the chemical Fokker-Planck approximation and estimated stationary distribution
obtained via direct simulation of the process (3.30).
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Figure 3.6: Left: Comparison of the stationary distribution (3.36) and estimated stationary
distribution from simulations of the process (3.30). Right: Average hitting time of
19 molecules as a function of the initial condition estimated from direct simulations
and the integral formula. Parameters: k1 = 0.1, k2ν = 1. [Code(s): CH3_CFP_HT1.m
and CH3_CFP_HT2.m]

Armed with an (approximate) analytic expression for the stationary distribution, we can
then turn to estimating mean hitting times for the process (3.30). For example, we can
define

τ(y) = inf{t > 0 : A(t) = 19, A(0) = y}, y ∈ {0, 1, . . . , 18}.

From the theory developed earlier in this chapter, we have

E[τ(y)] =
∫ 19

y

1
d(z)Ps(z)

∫ z

0
Ps(x) dx dz,

where Ps is given by (3.36) and the function d is given by (3.35). Figure 3.6 (right)
shows E[τ(y)] as a function of the initial condition (y) compared to the average hitting
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time obtained via direct simulation of the process. Once more, theory and numerical
experiment are in very close agreement with the chemical Fokker-Planck equation offering
an accurate approximation without the computational overhead of direct simulations.

3.4.2 General multi-species framework

Before we can write the general chemical Fokker-Planck equation we need to write down
the multi-dimensional analogue of the Fokker-Planck equation (3.11). To this end, con-
sider the N dimensional SDE

X(t + ∆t) = X(t) + f(X(t))∆t + g(X(t))
√

∆t ξ, t > 0, (3.37)
where X(t) and f(X(t)) are N -dimensional vectors, g(X(t)) is an N × N matrix and ξ is
an N -dimensional vector of independent standard Normal random variables. We define
the diffusion tensor to be the matrix D = 1

2g(x)gT (x), i.e.

Di,j(x) = 1
2

N∑
k=1

gi,k(x)gj,k(x).

The Fokker-Planck equation for the N -dimensional process X solving (3.37) is given by

∂

∂t
P (x, t) = −

N∑
i=1

∂

∂xi

fi(x)P (x, t) +
N∑

i=1

N∑
j=1

∂2

∂xi∂xj

Di,j(x)P (x, t).

Now suppose that we have a chemical reaction process in which:

• we have N ≥ 1 chemical species that can undergo q ≥ 1 distinct reactions,

• the N -dimensional vector X(t) will represent the state of the system at time t, i.e.
Xi(t) is the number of molecules of species i at time t,

• αj(x) be the propensity function associated with the jth reaction, where x ∈ RN

is the current state of the system,

• vj,i is the change in the number of molecules in species i, i.e. Xi, that occurs when
reaction j takes place.

The chemical master equations for this reaction process can be written in the form:
∂

∂t
P (x, t) =

q∑
j=1

(αj(x − vj)P (x, t) − αj(x)P (x, t)) ,

where P (x, t) = P[X(t) = x].

Carrying out the same large molecule number approximation as we did for the production-
degradation example, we can obtain the multi-dimensional chemical Fokker-Planck equa-
tions:

∂

∂t
P (x, t) = −

N∑
i=1

q∑
j=1

∂

∂xi

vj,iαj(x)P (x, t)

+ 1
2

N∑
i=1

N∑
k=1

∂2

∂xi∂xk

 q∑
j=1

vj,ivj,kαj(x)P (x, t)

 .



CHAPTER 4

Reaction-Diffusion Processes

Up to this point, we have considered well-mixed chemical reaction processes and this
assumption allowed us to neglect any spatial structure in our models. However, many
biological phenomena generate spatial pattern and structure; moreover, this spatial struc-
ture is often essential to the function of the system. Hence we need to extend our toolkit
to include classes of stochastic processes with explicit spatial extent. To this end, we will
introduce several stochastic models of the simplest type of spatial movement: diffusion.
We then extend our diffusion processes to reaction-diffusion processes in which particles
can not only move, but can also react with one another to exhibit more complex dynam-
ics. We illustrate this theory with some applications to pattern formation in biological
and ecological systems.

4.1 Modelling diffusion with SDEs

Our first approach to modelling diffusive motion of a particle (or cell, animal, insect,
etc.) is to directly model the dynamics of the position of the particle with a stochastic
differential equation (SDE). For example, we can denote the position of the particle at
time t in 3-dimensional space by (X(t), Y (t), Z(t)). If D > 0 is the diffusion coefficient,
the dynamics of the particle are given by

X(t + ∆t) = X(t) +
√

2D∆t ξx,

Y (t + ∆t) = Y (t) +
√

2D∆t ξy, (4.1)
Z(t + ∆t) = Z(t) +

√
2D∆t ξz,

where ξx, ξy and ξz are three independent sequences of standard Normal random variables.
The x, y and z coordinates of the particle are thus fully independent of one another and we
are really just considering three separate one dimensional processes; we could construct
a diffusion process on Rd in exactly the same way.

The model of diffusion given by (4.1) is continuous in both space and time (although
we choose to represent it using our computational definition). We can thus write down
the Fokker-Planck equation(s) for the probability density function for the position of the

65
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particle directly from (4.1), i.e.

∂

∂t
Px(ηx, t) = D

∂2

∂η2
x

Px(ηx, t),

∂

∂t
Py(ηy, t) = D

∂2

∂η2
y

Py(ηy, t), (4.2)

∂

∂t
Pz(ηz, t) = D

∂2

∂η2
z

Pz(ηz, t),

where Px(ηx, t) denotes the marginal density of the x coordinate of the process at time
t. Since the three components are the process are independent, we can obtain the joint
density function of the particle’s position, P (ηx, ηy, ηz, t), by multiplication, i.e.

P (ηx, ηy, ηz, t) = Px(ηx, t) Py(ηy, t) Pz(ηz, t).

Hence we can sum the equations in (4.2) to obtain the Fokker-Planck equation for the
joint density of the position:

∂

∂t
P = D

(
∂2

∂η2
x

P + ∂2

∂η2
y

P + ∂2

∂η2
z

P

)
,

which is the just the heat equation in three-dimensional space. It is straightforward to
show that

P (ηx, ηy, ηz, t) = 1
(4Dπt)3/2 exp

(
−η2

x − η2
y − η2

z

4Dt

)
. (4.3)

In order to visualize this PDF, we can integrate out the z component to obtain the joint
density of the x and y components:

P (ηx, ηy, t) =
∫
R

1
(4Dπt)3/2 exp

(
−η2

x − η2
y − η2

z

4Dt

)
dηz = 1

4Dπt
exp

(
−η2

x − η2
y

4Dt

)
. (4.4)

Figure 4.1: Comparison of the 2D density (4.4) at time t = 10 (left) with the estimated density
computed from direct simulations of the process (4.1) (right). Parameters: D =
0.0001. [Code: CH4_SDE_diffusion.m]

Figure 4.1 shows the two-dimensional density (4.4) at time t = 10 (left). From the
previous chapter, we know how to simulate the process (4.1) using the computational
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definition and Figure 4.1 shows the results of estimating the joint density of (X(t), Y (t))
via this approach. To estimate the joint density via simualtions, we need to discretize
space, count the number of sample paths finishing in each box at t = 10 (see Figure 4.1)
and then appropriately normalize these counts for the number of paths and area of the
boxes.

We can reduce (4.1) to a one-dimensional model of diffusive motion by just considering
the first component, i.e.

X(t + ∆t) = X(t) +
√

2D∆t ξ. (4.5)

The cells or other particles we wish to model often cannot move freely throughout the
spatial domain and hence we sometimes need to impose barriers on the domain of X(t)
to reflect physical reality. Suppose we want to restrict the domain of X(t) to the interval
[0, L] for some L > 0 by imposing reflecting boundaries at 0 and L. We can simulate
sample paths of (4.5) with these two reflecting boundaries using a variation on the SSA
introduced in the previous chapter:

At time t = 0, set X(0), then:

1 Generate ξ ∼ N(0, 1).

2 Compute the possible value of X(t + ∆t):

X(t + ∆t) = X(t) +
√

2D ∆t ξ,

3 If X(t + ∆t) ∈ [0, L], then we accept that value.
Otherwise, if X(t + ∆t) < 0, then set

X(t + ∆t) = −X(t) −
√

2D ∆t ξ.

If X(t + ∆t) > L, then set

X(t + ∆t) = X(t) + 2(L − X(t)) −
√

2D ∆t ξ.

Finally, set t = t + ∆t and go back to 1 .

The reflection steps in the SSA above are highlighted in blue with the first instance being
a reflection of the process through zero and the second a reflection through the line ηx = L.
Figure 4.2 A shows some sample paths of the process obtained via the SAA above with
reflection at ηx = 0 and ηx = L = 1.

We can also analyse the 1D diffusion process (4.1) by solving its associated Fokker-Planck
equation

∂

∂t
Px(ηx, t) = D

∂2

∂η2
x

Px(ηx, t), for ηx ∈ (0, L).

We additionally need to supply boundary conditions at ηx = 0 and ηx = L to account for
the reflection of the process that ensures X(t) ∈ [0, L] for all t ≥ 0. From our discussion of
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reflecting boundary conditions for the Fokker-Planck equation in Chapter 3, we know that
we need to specialise condition (3.25); doing so yields the pair of boundary conditions:

∂

∂ηx

Px(ηx, t)
∣∣∣∣∣
ηx=0

= ∂

∂ηx

Px(ηx, t)
∣∣∣∣∣
ηx=L

= 0 for all t > 0. (4.6)

Figure 4.2 A, B and C show how the probability density of X(t), P (ηx, t), evolves from
an initial distribution that is a Dirac delta at ηx = 0.4. The influence of the reflecting
boundaries at ηx = 0 and ηx = 1 become apparent by time t = 5 and eventually the
distribution of the particle’s position approaches a uniform distribution on [0, 1] for large
times. The blue histograms in Figure 4.2 are the estimated probability density from the
SSA and we observe relatively good agreement between the exact and estimated PDFs
at all times (2, 500 paths). We could improve the quality of the SSA approximation
by decreasing the step size in the simulations, at additional computational cost, or by
narrowing the width of the histogram bins.

A B

C D

Figure 4.2: A: Sample paths of (4.5) with reflecting boundaries at 0 and L = 1. B/C/D: Solution
to the 1D Fokker-Planck equation with reflecting (no-flux) boundary conditions
as given by (4.6) at times t = {1, 5, 120}. Parameters: D = 0.0001. [Codes:
CH4_SDE_reflect.m and CH4_FP_reflect.m]
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4.2 A compartmental model of diffusion

In the previous section we modelled diffusive motion by simulating the trajectory of indi-
vidual particles and then averaging over the trajectories of many particles to understand
the properties of the underlying process. We could instead change perspective and con-
sider a collection of particles from the outset and, rather than tracking individual particles,
we could record only changes in the number of particles present at each location.

Consider the spatial domain [0, 1] and discretise it into K = 40 compartments of equal
width, i.e. h = 1/40 is our discretisation parameter. Now we can set up a chemical
reaction process where each “species” Ai for i = 1, . . . , 40 counts the number of molecules
present in compartment i, which is the interval [(i−1)h, ih]. Next introduce a parameter
d > 0 which we call the “hopping rate” that controls the rate at which particles diffuse
into neighbouring compartments. We defer for now the discussion of how to choose
the discretisation parameter h > 0 and the hopping rate d to give a diffusivity rate D
corresponding to the diffusion coefficient from SDE diffusion model (4.1). The dynamics
of this process are thus given by:

A1
d

⇄
d

A2
d

⇄
d

. . . . . .
d

⇄
d

Ai−1
d

⇄
d

Ai

d

⇄
d

Ai+1
d

⇄
d

. . . . . .
d

⇄
d

AK−1
d

⇄
d

AK . (4.7)

This system has 2(K − 1) reactions but only K distinct propensities. Let αi(t) = dAi(t)
and note that this propensity represents two reactions:

Ai
d−→ Ai+1 (jump right), and Ai

d−→ Ai−1 (jump left).

Suppose that we start with N molecules in the system, i.e. ∑K
i=1 Ai(0) = N . Then the

total propensity of the system is given by

α0(t) =
K−1∑
i=1

αi(t) +
K∑

i=2
αi(t) = 2

K∑
i=1

αi(t) − α1(t) − αK(t) (4.8)

= 2d
K∑

i=1
Ai(t) − α1(t) − αK(t) = 2dN − α1(t) − αK(t). (4.9)

We can immediately see how to exploit the additional structure of this process to optimize
its simulation via the Gillespie algorithm. In particular, the total number of molecules
(N) is always conserved and only two molecule numbers and two propensity functions
change at each reaction. Moreover, as (4.8) illustrates, the total propensity function only
changes when there is a reaction impacting compartment 1 or compartment K. Thus
we have the following optimized Gillespie algorithm for simulating our compartmental
diffusion process:

At time t = 0, set the initial molecule numbers in each compartment (Ai(0) for i =
1, . . . , K), then:

1 Generate r1, r2 ∼ U([0, 1]).

2 Compute the propensity functions αi(t) and hence the total propensity function
α0(t) from (4.8).
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3 Compute the time of the next reaction, which takes place at time t+τ , by calculating

τ = 1
α0(t)

log(1/r1).

4 If r2 <
∑K−1

i=1 αi/α0, then find j ∈ {1, 2, . . . , K − 1} such that

r2 ≥ 1
α0

j−1∑
i=1

αi and r2 <
1
α0

j∑
i=1

αi.

Then adjust the number of molecules as follows:

Aj(t + τ) = Aj(t − 1), Aj+1(t + τ) = Aj+1(t) + 1,

i.e. one molecule in compartment j jumps to the right into compartment j + 1.

5 If r2 ≥ ∑K−1
i=1 αi/α0, then find j ∈ {2, . . . , K} such that

r2 ≥ 1
α0

K−1∑
i=1

αi +
j−1∑
i=2

αi

 and r2 <
1
α0

K−1∑
i=1

αi +
j∑

i=2

 .

Then adjust the number of molecules as follows:

Aj(t + τ) = Aj(t − 1), Aj−1(t + τ) = Aj−1(t) + 1,

i.e. one molecule in compartment j jumps to the left into compartment j − 1.

6 Set t = t + τ and go back to 1 .

Figure 4.3 below shows some simulations of the compartmental diffusion process in panel
A. Note that we have not explicitly implemented a reflecting boundary but particles
cannot move left from compartment A1 or right from compartment AK and so the process
is naturally confined to the interval [0, 1]. In panels B, C and D of Figure 4.3 we plot
the estimated probability density of the process at various times and compare it to the
predictions of the corresponding Fokker-Planck equations for the analogous continuum
(SDE) model of diffusion. We see excellent agreement between the compartmental and
continuum models because we chose the diffusion coefficient D = d/h2, where d is the
compartmental hopping rate and h is our discretisation parameter. But how do we know
that this is the correct relationship between the parameters of the discrete and continuous
models of diffusion?

To understand how our discrete and continuous models relate to one another, we need to
write down the the chemical master equations for the compartmental model. To this end,
let p(n, t) = P[A(t) = n] denote the joint probability mass function of the compartmental
process. Next define the discrete shift operators Ri, Li : NK 7→ NK by

Ri : [n1, . . . , ni, ni+1, . . . , nk] 7→ [n1, . . . , ni + 1, ni+1 − 1, . . . , nk], i = 1, 2, . . . , K − 1,

Li : [n1, . . . , ni−1, ni, . . . , nk] 7→ [n1, . . . , ni−1 − 1, ni + 1, . . . , nk], i = 2, 3, . . . , K.
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The chemical master equations for the process (4.7) are thus given by:

d

dt
p(n) = d

K−1∑
j=1

((nj + 1)p(Rjn) − njp(n)) + d
K∑

j=2
((nj + 1)p(Ljn) − njp(n)) . (4.10)

We can then define the mean of the process (4.7) by M(t) = [M1(t), . . . , MK(t)] where
Mi(t) denotes the mean number of molecules in compartment i and is given by

Mi(t) =
∑

n
ni p(n, t) :=

N∑
n1=0

N∑
n2=0

· · ·
N∑

nK=0
ni p(n, t).

A B

C D

Figure 4.3: A: Sample paths of (4.5) with reflecting boundaries at 0 and L = 1. B/C/D: Solution
to the 1D Fokker-Planck equation with reflecting (no-flux) boundary conditions
as given by (4.6) at times t = {1, 5, 120}. Parameters: D = 0.0001. [Codes:
CH4_SDE_reflect.m and CH4_FP_reflect.m]

With some work, we can show that the evolution equations for the mean are given by
d

dt
Mi(t) = d (Mi+1 + Mi−1 − 2Mi) , i = 2, 3, . . . K − 1, (4.11)
d

dt
M1 = d(M2 − M1),

d

dt
MK = d(Mk−1 − MK).

To compare this to the continuum model of diffusion studied in the previous section, we
need to convert the mean number of molecules, Mi, to a concentration. If c(x, t) denotes
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the concentration of molecules at location x, we can make the approximation

c(xi, t) ≈ Mi(t)
h

where xi denotes the center of the ith compartment for i = 1, . . . , K. Using this approx-
imation, divide (4.11) across by h to obtain

∂

∂t
c(xi, t) = d (c(xi + h, t) + c(xi − h, t) − 2c(xi, t)) .

Assuming c is sufficiently smooth, we can Taylor expand the right-hand side to obtain
the approximation

∂

∂t
c(xi, t) ≈ dh2 ∂2

∂x2 c(xi, t).

Hence if we choose d = D/h2, where D is the continuum diffusion coefficient, we have

∂

∂t
c(xi, t) = D

∂2

∂x2 c(xi, t),

and the evolution equation for the molecule concentration will match the corresponding
Fokker-Planck equation of the SDE model of diffusion. In other words, the compartmental
and continuum diffusion models will agree on average.

To fully characterize the distribution of the compartmental diffusion process we addition-
ally need to understand the variance of the process. The variance vector of the process
(4.7) is given by V(t) = [V1(t), . . . , VK(t)], where

Vi(t) =
∑

n
(ni − Mi(t))2 p(n, t) :=

N∑
n1=0

N∑
n2=0

· · ·
N∑

nK=0
(ni − Mi(t))2 p(n, t).

Deriving a system of evolution equations for the variances requires us to define more
generally the covariance matrix Vi,j by

Vi,j =
∑

n
ninjp(n, t) − MiMj, i, j = 1, . . . , K. (4.12)

The diagonal entries of the covariance matrix (4.12) are the variances defined above.
Multiplying the chemical master equations by n2

i and summing over n yields

d

dt

∑
n

n2
i p(n, t) = d

K−1∑
j=1

(∑
n

n2
i (nj + 1)p(Rjn) −

∑
n

n2
i njp(n, t)

)

+ d
K∑

j=2

(∑
n

n2
i (nj + 1)p(Ljn) −

∑
n

n2
i njp(n, t)

)
. (4.13)

Suppose i ∈ {2, . . . , K − 1}. Evaluate the first term on the right-hand side of (4.13) for
j = i and by changing indices Rin 7→ n:∑

n
n2

i (ni + 1)p(Rjn) −
∑

n
n2

i nip(n, t) =
∑

n
(ni − 1)2(ni)p(n) −

∑
n

n2
i nip(n, t)

=
∑

n
(−2n2

i + ni)p(n) = −2Vi − 2M2
i + Mi.
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Now we need to deal with the off-diagonal terms. The term corresponding to j = i − 1
in the first sum can be rewritten as∑

n
n2

i (ni−1 + 1)p(Rj−1n) −
∑

n
n2

i ni−1p(n, t) =
∑

n
(2nini−1 + ni−1)p(n)

= 2Vi,i−1 + 2MiMi−1 + Mi−1.

Every other term in the first sum on the right-hand side of (4.13) with j /∈ {i, i−1} is zero.
The second sum on the right-hand side of (4.13) is handled analogously by addressing
first the cases j = i and j = i + 1, and showing that all other terms are zero. Carrying
out the requisite algebra yields

d

dt

∑
n

n2
i p(n, t) = d

(
2Vi,i−1 + 2MiMi−1 + Mi−1 − 2Vi − 2M2

i + Mi

)
+ d

(
2Vi,i+1 + 2MiMi+1 + Mi+1 − 2Vi − 2M2

i + Mi

)
.

Finally, we arrive at the following set of equations for the variances of the compartments:
d

dt
Vi = 2d (Vi,i+1 + Vi,i−1 − 2Vi) + d (Mi+1 + Mi−1 + 2Mi) , i = 2, . . . , K − 1, (4.14)

d

dt
V1 = 2d (V1,2 − V1) + d (M2 + M1) ,

d

dt
VK = 2d (VK,K−1 − VK) + d (MK−1 + MK) ,

(4.15)

However, the system (4.14) is not a fully closed set of equations because it involves
covariance terms of the form Vi,j for i 6= j. Hence we need to also write down evolution
equations for the off-diagonal covariance matrix terms; this can be done by repeating
variations on the arguments above.

We can also consider the steady state versions of the mean and variance equations to
study the long-term behaviour of the compartmental diffusion process. Doing so yields

M i = N

K
for i = 1, . . . , K,

and
V i = N

K
− N

K2 , V i,j = −N

K2 , i 6= j.

In fact, solving the chemical master equations directly shows that the stationary distri-
bution of the compartmental diffusion process is a multinomial distribution, i.e.

ps(n) = C

n1!n2! · · · nK !
,

for an appropriate normalising constant C > 0.

4.3 SSAs for reaction-diffusion processes

4.3.1 Compartmental models

We begin with a discrete-space approach that extends our compartmental model of diffu-
sion to incorporate simple reaction dynamics (zero and first order reactions). We begin
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by defining an essentially one-dimensional spatial domain

Ω = [0, L] × [0, h] × [0, h]

where we assume h � L so that spatial dynamics are only occurring in the x dimension.
Formally, we can assume that we have periodic boundary conditions in the y and z
directions. Next divide the interval [0, L] into K compartments of width h, as we did
before, and let Ai(t) denote the number of molecules present in compartment i at time t.
Note that compartment i is the box [(i − 1)h, ih] × [0, h] × [0, h] and hence the volume of
compartment i is h3. The dynamics of the process will be as follows:

A1
d

⇄
d

A2
d

⇄
d

. . . . . .
d

⇄
d

Ai−1
d

⇄
d

Ai

d

⇄
d

Ai+1
d

⇄
d

. . . . . .
d

⇄
d

AK−1
d

⇄
d

AK ,

Ai
k1−→ ∅, i = 1, . . . , K, ∅ k2−→ Ai, i = 1, . . . , K/5. (4.16)

To summarize the dynamics above:

• Molecules diffuse at rate d between all compartments (and we can choose d = D/h2

in order to relate this model to a continuum diffusion approach),

• molecules are produced in the subdomain [0, L/5] at rate k2 per compartment,

• all molecules in all compartments are subject to degradation at rate k1.

In order to analyse the dynamics of the process defined by the system of reactions (4.16),
we need to write down the reaction-diffusion (RD) master equations for the process. The
RD master equations are:

d

dt
p(n) = d

K−1∑
j=1

((nj + 1)p(Rjn) − njp(n)) + d
K∑

j=2
((nj + 1)p(Ljn) − njp(n))

+ k1

K∑
i=1

((ni + 1)p(n1, . . . , ni + 1, . . . , nk) − nip(n)) (4.17)

+ k2h
3

K/5∑
i=1

(p(n1, . . . , ni − 1, . . . , nk)p(n)) .

The first two terms on the right-hand side of (4.17) represents diffusive reactions, the
third term represents the degradation events and the final term captures the impact
of production reactions in the subdomain [0, L/5]. We can once more define the mean
vector M(t) = [M1(t), . . . , MK(t)] and write down a set of evolution equations for the
components of M(t). Using the fact that all reactions in (4.16) are either zero or first
order, we can directly write down the evolution equations for the stochastic means:

d

dt
M1 = d(M2 − M1) + k2h

3 − k1M1,

d

dt
Mi = d (Mi+1 + Mi−1 − 2Mi) + k2h

3 − k1Mi, i = 2, 3, . . . K/5,

d

dt
Mi = d (Mi+1 + Mi−1 − 2Mi) − k1Mi, i = K/5 + 1, . . . K − 1,

d

dt
MK = d(MK−1 − MK) − k1MK .
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To better compare the stochastic means with a spatially continuous approximation, we
let M̃i)(t) = Mi(t)/h3 to move from molecule numbers to molecules concentrations. This
volumetric scaling and choosing d = D/h2 yields:

d

dt
M̃1 = D

M̃2 − M̃1

h2 + k2 − k1M̃1,

d

dt
M̃i = D

M̃i+1 + M̃i−1 − 2M̃i

h2 + k2 − k1M̃1, i = 2, 3, . . . K/5,

d

dt
M̃i = D

M̃i+1 + M̃i−1 − 2M̃i

h2 − k1M̃1, i = K/5 + 1, . . . K − 1, (4.18)

d

dt
M̃K = D

M̃K−1 − M̃K

h2 − k1M̃K .

We pause to note that from the definition of the derivative, we have the following first-
order finite-difference approximation:

d

dx
f(x) = lim

h↓0

f(x + h) − f(x)
h

≈ ∆f(x) := f(x + h) − f(x)
h

.

Hence we can make the same finite-difference approximation of the second derivative:

d2

dx2 f(x) ≈ ∆2f(x) = f(x + h) − 2f(x) + f(x − h)
h2 .

Therefore we can interpret the evolution equations (4.18) as a finite-difference approxim-
ation of the following (deterministic) reaction-diffusion PDE:

∂

∂t
m(x, t) = D

∂2

∂x2 m(x, t) + k21{x∈[0,L/5]} − k1m(x, t), x ∈ (0, L), (4.19)

with reflecting boundary conditions:

∂

∂x
m(x, t)

∣∣∣∣∣
x=0

= ∂

∂x
m(x, t)

∣∣∣∣∣
x=L

= 0,

where 1 denotes the indicator function.

Figure 4.4 below shows the results of a single simulation of the reaction-diffusion process
(4.16) with the estimated PMF plotted at different times in blue. The solution to the
approximating reaction-diffusion PDE (4.19) is plotted for comparison in red and we
observe quite close agreement between the two models, even for a single realisation of
the stochastic process. Of course, the reaction-diffusion approximation is only expected
to capture the mean behaviour and will not model fluctuations about the mean of the
process.

4.3.2 SDE-based reaction-diffusion models

As with the modelling of diffusion, could take the alternative approach of tracking the
movements and reactions of individual particles, rather than working with a discretised
spatial domain of compartments. To illustrate this alternative approach, we will build
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Figure 4.4: Simulations of the compartmental reaction-diffusion process (4.16) with the es-
timated PMF in blue and the PDE approximation (4.19) shown in red. Para-
meters: D = 0.0001, h = 0.01, k1 = 0.001, k2 = 0.3125, L = 1. [Code:
CH4_compartment_RD.m]

a spatially continuous model of the compartmental reaction-diffusion process (4.16). We
will once more consider the spatial domain to be Ω = [0, L] × [0, h] × [0, h] with h � L so
that we only model spatial movement in the x dimension. We now want the continuum
model to capture the following attributes:

• Molecules diffuse at rate D on [0, L] with reflecting boundaries at x = 0 and x = L,

• molecules are produced in the subdomain [0, L/5] at rate k2,

• all molecules are subject to degradation at rate k1.

To simulate the stochastic process outlined above, we will discretise time (rather than
space) by introducing a finite-size time step ∆t > 0. The spatial dynamics of each particle
Xi will be given by the following diffusive SDE:

Xi(t + ∆t) = Xi(t) +
√

2D∆t ξ. (4.20)

Then at each time t we will evolve the process forward in time by carrying out the
following steps:

1 For each molecule, compute its x position at time t+∆t according to (4.20) (obeying
the reflecting boundary conditions at x = 0 and x = L),

2 For each molecule, generate r1 ∼ U([0, 1]). If r1 < k1∆t, remove the molecule
[degradation reaction occurs].

3 Generate r2 ∼ U([0, 1]). If r2 < (k2h
2L/5)∆t, then generate r3 ∼ U([0, 1]) and

introduce a new molecule at position x = r3L/5 [production reaction occurs].

We don’t further specify the details of step 1 since we have previously detailed the
algorithm to simulate the diffusive SDE (4.20).



4.3 SSAs for reaction-diffusion processes 77

If we simulate the reaction-diffusion process using this algorithm and estimate the prob-
ability density of the number of molecules we obtain results virtually indistinguishable to
those shown in Figure 4.4 (assuming we choose D = dh2). But why should this new al-
gorithm produce statistically accurate realisations of the diffusion-production-degradation
process?

The algorithm above essentially couples our computational definition of SDEs to the
“naive” SSA for chemical reaction systems that we introduced at the very beginning of
the course. If we choose ∆t sufficiently small that ∆tk1 � 1, then we correctly reproduce
the degradation reaction in step 2 because

P [molecule i gets degraded in [t, t + ∆t]] ≈ k1∆t + O(∆t2).

Similarly, new molecules are produced in the region [0, L/5], which has volume h2L/5
and so

P [new molecule produced in [t, t + ∆t]] ≈ k2h
2L/5∆t + O(∆t2).

As with the degradation reactions, we will need to choose the time step sufficiently small
to ensure accuracy of the algorithm. In this case, we need k2h

2L/5∆t � 1 and this
can also be achieved by choosing h sufficiently small since h is the spatial discretisation
parameter. Finally, if a molecule is produced at a given time step, then it was equally
likely to have been produced at any location in [0, L/5] and so we simply assign it to a
uniformly random location in [0, L/5] in the second part of step 3 .

Note that the ordering of the steps in the algorithm here does not matter. If we move
molecule i in the SDE updating step, but then that molecule gets degraded at the same
time step, it does not impact the dynamics of any other molecule. We also check the
degradation reaction for every molecule at each time step so it is possible for multiple
molecules to be degraded at each time step but this is not a problem since the molecules
are not interacting with each other! In other words, we don’t have to worry about a case
in which two molecules get degraded in one time step but the presence of one of these
molecule would have influenced the subsequent dynamics of the other; we will come back
to these potential issues in the next section.

One other difference to this continuum space approach in which we track molecule traject-
ories is that we need to dynamically track the number of particles. From a computational
perspective, the size of our system is not fixed and we need to dynamically update the
number of SDEs that we are solving and discontinue any SDEs that correspond to mo-
lecules that have been degraded. We also need to introduce and solve a new SDE when
a new molecule enters the system via a production reaction. There are numerous ways
to handle this complication during the implementation of the algorithm but it is worth
factoring in when comparing the computational cost of alternative modelling approaches.

4.3.3 Reaction-Diffusion processes with higher-order reactions

In the preceding sections, we introduced a discrete space and a continuous space ap-
proach to analysing and simulating stochastic reaction-diffusion processes. In both cases,
we restricted our examples to zero and first order reactions, and both approaches were
straightforward to implement. Of course, most models of interest in biology will involve



78 4.3 SSAs for reaction-diffusion processes

higher-order reactions (i.e. interactions between at least two different species) and this
forces us to answer some questions which simply did not arise with only zero or first order
reactions. In particular, if two molecules are required for a reaction to occur, how close
do they need to be in space for the reaction to occur? Should the reaction probability
depend on the distance between molecules or always occur if they are “close enough”?

Consider the following illustrative example of a compartmental reaction-diffusion pro-
cess: There are two types of molecules, type A and type B, present in the pseudo-one-
dimensional domain

Ω = [0, L] × [0, h] × [0, h],

and as usual we only model their movement in the x dimension with the assumption that
h � L. The domain [0, L] is discretised into K compartments of width h. The number
of A molecules in compartment i, the interval [(i − 1)h, ih], at time t is given by “species”
Ai(t) and, similarly, Bi(t) denotes the number of B molecules in compartment i. In terms
of reactions, posit that the process has the following dynamics:

• A molecules move to adjacent compartment at hopping rate dA (dA = DA/h2) and
B molecules have hopping rate (dB = DB/h2),

• molecules can only react with other molecules in their own compartment,

• Two A molecules react at rate k1 to produce a product not of interest,

• An A and a B molecule react at rate k2 to produce a product not of interest,

• A molecules are degraded at rate k3 in [0, L],

• B molecules are degraded at rate k4 in [0, L],

• A molecules are produced at rate k5 in [0, L],

• B molecules are produced at rate k6 in [3L/5, L],

The second bullet point above is making explicit the crucial assumption about which
molecules can react with each other, i.e. only those within the same spatial compartment.
This is essentially assuming that molecules are well-mixed within each compartment, so
that the process has two different spatial scales. The macro scale if the interval [0, L] and
the molecules are not well-mixed on this scale (we can have spatial pattern), but on the
micro scale (within a compartment) molecules are well-mixed spatially and there is no
spatial structure within the compartments.
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In our usual reaction notation, we can represent this process as follows:

A1
dA

⇄
dA

A2
dA

⇄
dA

. . . . . .
dA

⇄
dA

Ai−1
dA

⇄
dA

Ai

dA

⇄
dA

Ai+1
dA

⇄
dA

. . . . . .
dA

⇄
dA

AK−1
dA

⇄
dA

AK ,

B1
dB

⇄
dB

B2
dB

⇄
dB

. . . . . .
dB

⇄
dB

Bi−1
dB

⇄
dB

Bi

dB

⇄
dB

Bi+1
dB

⇄
dB

. . . . . .
dB

⇄
dB

BK−1
dB

⇄
dB

BK ,

Ai + Ai
k1−→ ∅, Ai + Bi

k2−→ ∅, i = 1, 2, . . . , K, (4.21)

Ai
k3−→ ∅, Bi

k4−→ ∅, ∅ k5−→ Ai, i = 1, . . . , K,

∅ k6−→ Bi, i = 3K/5 + 1, . . . , K.

We now have a (potentially very high-dimensional) reaction-diffusion process that can be
simulated using the standard Gillespie algorithm. Since we have second-order reactions,
we can no longer easily write down a closed system of equations for the stochastic mean
of the process. We can however make a law of mass action approximation of the process
based on an extension of the mass action principle we used for well-mixed systems. Firstly,
let a(x, t) and b(x, t) denote the concentrations of molecules of species A and species B at
location x ∈ [0, L]. These concentrations can be approximated from the compartmental
model as

a(xi, t) ≈ Ai(t)
h3 , b(xi, t) ≈ Bi(t)

h3 ,

where xi denotes the center of compartment i. If we set dA = dB = 0, then the standard
law of mass action would give us the following approximate model for the average number
of particles at each location:

∂

∂t
a(x, t) = −2k1a

2 − k2ab − k3a + k5,

∂

∂t
b(x, t) = −k2ab + k61{x∈[3L/5,L]} − k4b, (4.22)

for each x ∈ [0, L]. To extend the law of mass action to our spatial model, we simply
include diffusion of both species A and B at the appropriate rates, and add the no flux
boundary conditions at x = 0 and x = L, to yield:

∂

∂t
a(x, t) = −2k1a

2 − k2ab − k3a + k5 + DA
∂2

∂x2 a(x, t),

∂

∂t
b(x, t) = −k2ab + k61{x∈[3L/5,L]} − k4b + DB

∂2

∂x2 b(x, t), (4.23)

∂

∂x
a(x, t)

∣∣∣∣∣
x=0

= ∂

∂x
a(x, t)

∣∣∣∣∣
x=L

= ∂

∂x
b(x, t)

∣∣∣∣∣
x=0

= ∂

∂x
b(x, t)

∣∣∣∣∣
x=L

= 0. (4.24)

Figure 4.5 below shows the results of simulating one realisation of the stochastic process
and estimating the PMF at time t = 200, along with the solution of the associated law of
mass action approximation from (4.23). Because we are comparing a model of the approx-
imate mean behaviour with a single realisation of the process, there is some disagreement
due to the noise nature of the underlying process but both solutions qualitatively agree
in terms of the respective domains of dominance of the A and B molecules.
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Figure 4.5: Simulations of the compartmental reaction-diffusion process (4.21) with the estim-
ated PMF in blue and the PDE approximation (4.19) shown in red. Parameters:
DA = DB = 0.0001, h = 0.01, k1 = 0.03, k2 = 0.3, k3 = 0.0001, k4 = 0.0001,
k5 = 0.0000001, k6 = 0.000001 L = 1. [Code: CH4_RD_compartment.m]

To conclude our discussion of the compartmental approach to modelling reaction-diffusion
processes, we need to address a key limitation of the method outlined above. Specifically,
we need to discuss the accuracy of the method as it relates to the choice of the compart-
ment size h (also thought of as the spatial discretisation parameter). We saw previously
that we could derive reaction-diffusion PDEs in the limit as h ↓ 0 when we have only zero
and first order reactions. In fact, in these cases, the reaction-diffusion PDEs are exactly
the evolution equations for the stochastic mean of the system as h ↓ 0. However, when we
have higher-order (nonlinear) reactions, there is trade-off between accurately modelling
the diffusion of molecules and the reactions of molecules as h ↓ 0. In particular, we model
diffusion ever more accurately as we decrease h, but we model nonlinear reactions less
accurately as we decrease h.

To understand this drawback of compartmental diffusion, we will revisit the stochastic
dimerisation process from Chapter 1, i.e. the well-mixed single-species chemical reaction
process with dynamics:

A + A
k1−→ ∅, ∅ k2−→ A. (4.25)

In Chapter 1 we saw that we could express the stationary distribution of the process
(4.25) in terms of the modified Bessel function of the first kind and we hence calculated
the stationary mean of the process, Ms, exactly. This process can thus serve as a good
benchmark since we understand its properties fully. We now extend the dimerisation
process to the spatial domain

Ω = [0, L] × [0, L] × [0, L],

which we discretise into K compartments of width h in each dimension. In other words,
we divide Ω into K3 cubes each of volume h3, where compartment (i, j, k) is the compact
interval [(i−1)h, ih]× [(j −1)h, jh]× [(k −1)h, kh] for (i, j, k) ∈ {1, . . . , K}3. We then let
Ai,j,k(t) denote the number of molecules of species A present in the compartment (i, j, k)
at time t. As in the previous example, only molecules in the same compartment can
reaction with one another so the reactions in (4.25) become:

Ai,j,k + Ai,j,k
k1−→ ∅, ∅ k2−→ Ai,j,k. (4.26)
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We also assume that molecules can diffuse at rate DA(= dAh2), but since there is pro-
duction and degradation across the entire domain we don’t expect this to result in any
spatial structure in the solution, other than that resulting from stochastic fluctuations.
In three dimensions, diffusion corresponds to 6 possible movements of a molecule; the
cube of volume h3 that the molecule resides in has 6 faces (unless on a boundary) and a
molecule may diffusion into a neighbouring cube corresponding to moving through each
one of these faces.

The propensity functions for degradation and production in each compartment of our
spatial process are:

αi,j,k,1(t) = k1Ai,j,k(t)(Ai,j,k,1(t) − 1)
h3 , αi,j,k,2(t) = k2h

3,

and the propensity function for diffusion in compartment (i, j, k) is DAAi,j,k(t)/h2 =
dAAi,j,k(t). We can also compute the total number of A molecules in the system at time
t as

A(t) =
∑
i,j,k

Ai,j,k(t)

and the long-run stochastic mean can then be defined as

M(h) := lim
t→∞

E[A(t)],

where we write the long-run mean as a function of h in anticipation of studying its
behaviour as h ↓ 0. If our SSA works as we would hope, we should obtain limh→0 M(h) =
Ms.

Figure 4.6: Simulations of the compartmental spatial dimerisation process using the standard
Gillespie algorithm (β = 0) and the modified algorithm with rescaled dimerisation
propensities (β = 0.275). Parameters: DA = 0.0001, L = 1.

We can simulate the spatial dimerisation process via the Gillespie algorithm by choosing
h = L/K and increasing the value of K to send h → 0. The results of these simulations
are plotted in Figure 4.6 with the red dots indicating the estimated value of M(h) from
standard Gillespie simulations and the solid magenta line showing the true value of Ms



82 4.4 Applications to pattern formation

for the well-mixed version of the dimerisation process. Since we have only a single species
of molecules diffusing, we do not expect any spatial structure or influence on the total
molecule count and Ms and M(h) should agree, but we actually see M(h) increasing and
diverging from Ms as h decreases. It turns out that limh→0 M(h) does not exist and the
SSA is not convergent as h → 0. This is because the dimerisation reaction doesn’t occur
often enough as h → 0 and hence we conclude that the compartmental SSA approach is
only valid for h sufficiently large! This is exactly the opposite situation when we use a
finite difference scheme to numerically approximate the solution to a PDE; we expect to
see convergence of the scheme as we refine the mesh by taking the spatial discretisation
parameter h smaller and smaller.

The fact that we cannot take h arbitrarily small is immediately disconcerting since we
want h small to ensure that we model diffusion accurately. We generally want h � L to be
able to accurately reflect spatial variation in the solution. However, for this dimerisation
process we need to take h � k1/DA in order to ensure that the nonlinear reactions aren’t
artificially suppressed, leading to a range of acceptable values for h:

k1/DA � h � L.

Similarly, if we instead had a two species reaction of the form:

A + B
k−→ C,

with A and B diffusing at rates DA and DB respectively, then we would need h �
k/(DA + DB) to accurately reflect this reaction. Erban and Chapman (2009) have shown
that for the spatial dimerisation process, it is possible to remedy this issue by rescaling
the propensity function of the dimerisation reaction to

αi,j,k,1(t) = Ai,j,k(t)(Ai,j,k,(t) − 1) DAk1

DAh3 − βk1h2 .

For β = 0, this is the standard Gillespie algorithm but for β > 0 the algorithm can be
refined to accurately recover the value of Ms, as shown by the black dots in Figure 4.6.
For a given value of K, the optimal value of β can be determined analytically for this
process. However, this is a challenging problem in general, and the optimal choice of h
for accuracy in both the reaction and diffusive dynamics is an area of active research.

4.4 Applications to pattern formation

There are many examples of regular spatial pattern formation in biology and ecology,
including zebra stripes, spotted and striped fish, and vegetation patterns. Turing’s pat-
tern forming mechanism has long been studied as a simple and parsimonious way for
self-organized patterns to form in the absence of external cues or other exogenous spatial
structure. Turing patterns are typically studied mathematically in PDE-based models,
but, as we have seen earlier in this chapter, these models are often coarse-grained approx-
imations that capture average behaviour and neglect fluctuations and finite-size effects.
To conclude our investigations of spatially extended stochastic processes, we will thus
present an example of a “Turing pattern” in a stochastic reaction-diffusion system.
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Consider two species of molecules, A and B, reacting and diffusing in our standard pseudo
one-dimensional domain

Ω = [0, L] × [0, h] × [0, h],

with the assumption that h � L. We only model diffusive movement in the x coordinate
and discretise the interval [0, L] into K compartments, with compartment i given by
[(i − 1)h, ih]. We choose Schnakenberg reaction kinetics so that the dynamics of the
model are given by:

A1
dA

⇄
dA

A2
dA

⇄
dA

. . . . . .
dA

⇄
dA

Ai−1
dA

⇄
dA

Ai

dA

⇄
dA

Ai+1
dA

⇄
dA

. . . . . .
dA

⇄
dA

AK−1
dA

⇄
dA

AK ,

B1
dB

⇄
dB

B2
dB

⇄
dB

. . . . . .
dB

⇄
dB

Bi−1
dB

⇄
dB

Bi

dB

⇄
dB

Bi+1
dB

⇄
dB

. . . . . .
dB

⇄
dB

BK−1
dB

⇄
dB

BK ,

2Ai + Bi
k1−→ 3Ai, ∅ k2−→ Ai, i = 1, 2, . . . , K, (4.27)

Ai
k3−→ ∅, ∅ k4−→ Bi, i = 1, . . . , K.

When choosing the hopping rates, dA and dB, we employ the standard relationship
between the compartmental hopping rates and the continuum diffusion coefficients, i.e.

dA = DA

h2 , dB = DB

h2 .

In the standard nomenclature of Turing pattern formation, species A should act as the
slower diffusing activator and species B should play the role of the more quickly diffusing
inhibitor species. Thus we choose the ratio of the diffusion coefficients as

DB

DA

= 100, with DA = 10−5 and DB = 10−3. (4.28)

For this example, the reaction rates are chosen according to:

k1/h6 = 10−6, k2h
3 = 1, k3 = 0.02, k4h

3 = 3.

Figure 4.7 below shows a single realisation of the process (4.27) with K = 40 compart-
ments and the reaction and diffusion rates given above (L = 1, h = 0.025). Panels A
and B show the time-space evolution of the process from a homogeneous initial condi-
tion. After around 500 seconds, we begin to see the emergence of spatial structure in the
abundances of both the A and B molecules, although there is significant variation over
time due to the underlying stochasticity of the process. Panels C and D show the state of
the system at time t = 2000 seconds and we observe clear spatial patterning, especially
in species A, which has very large amplitude patterns. Since this is a single realisation
of the process, the roughness of the patterns is to be expected and we could average over
many realisations if we wanted to estimate the mean behaviour, which would display
much greater regularity.

To gain additional insight into the process (4.27), we can write down a relatively simple
mass action approximation of the average behaviour in the usual way. Letting a(x, t) and
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Figure 4.7: A/B: Space-time plots of the dynamics of the process (4.27) (single realisation).
C/D: Plots of the distribution of A and B molecules at time t = 2000 (in seconds).
[Code: CH4_Schnakenberg.m]

b(x, t) denote the A and B molecules concentrations, our mass action model is:

∂

∂t
a = k1a

2b + k2 − k3a + DA
∂2

∂x2 a, x ∈ (0, L),

∂

∂t
b = −k1a

2b + k4 + DB
∂2

∂x2 b, x ∈ (0, L), (4.29)
∂

∂x
a(x, t)

∣∣∣
x=0

= ∂

∂x
a(x, t)

∣∣∣
x=L

= ∂

∂x
b(x, t)

∣∣∣
x=0

= ∂

∂x
b(x, t)

∣∣∣
x=L

= 0.

Linear stability analysis of the approximate deterministic model (4.29) shows that, for our
chosen parameter set, it has a spatially homogeneous equilibrium solution corresponding
to

A = 200, B = 75,

molecules per volume h3. The spatially homogeneous solution is stable for DA = DB = 0
but unstable for the diffusion coefficient values in (4.28). Hence the results shown in
Figure 4.7 really do represent a classical example of a spatially homogeneous equilibrium
that is destabilised by a diffusion drive instability.
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