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Chapter 1

Combinatorics

Theorem 1 (Fundamental Principle of Counting) Suppose we conduct r € N experi-
ments and that experiment i € {1,...,r} has n; possible outcomes. Then there are

Ny X Ng X +++ X 1Ny

possible outcomes of the r experiments.

Corollary 1 There are n! :=n(n —1)(n —2)...3.2.1 ways to arrange n € N distinct objects,
i.e. when we can distinguish between each of the n objects.

Corollary 2 Suppose we have r different types of objects with n1 objects of type 1, no objects
of type 2, and so on, with n; objects of type i € {1,...,r}. If ni+na+---+mn, =n, then there

are
n!

ni'ng! ... n,!

distinct arrangements of the total collection of n objects.

Definition 1 Ifn > k with n,k € N, then we define the binomial coefficients by the formula:

(1) =

Proposition 1 Suppose n > k with n,k € N. There are (Z) distinct groups of k objects that
can be chosen from a collection of n distinguishable objects, i.e. a distinct group means that
the groupings are unique up to permutation of their elements.

Theorem 2 (Binomial Theorem) If z,y € R and n € N, then

(x+y)" = i <Z> T

k=0

Definition 2 Consider r natural numbers ni,ng,...,n, such that ny +ns+---+n, =n. The
multinomial coefficients are defined by the formula:

< n > n!
Ny, N2, ..., Ny ni!'ng! ...yt
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Proposition 2 If we divide a collection of n distinguishable objects into r groups of sizes

N1,N2y ..., Ny, L.6. N1 +No2+---+n, =n, then there are (n1 nz" nr) possible distinct groupings.

Theorem 3 (Multinomial Theorem) If z1,z9,...,2, € R and n € N, then

n
1+ o+ F )t = ( )x"lxnz...x"’“.
( T) Z . ny,N2,...,My L "
n1,n2,...,nrEN:
nit+nz+-+nr=n
Proposition 3 (“Stars and bars 1”) Suppose x1,x2,...,x, are positive integers and con-
sider the equation
r1+x9+ ..., =n, neN. (1.1)
There are (2:11) possible solutions to equation (1.1).
Proposition 4 (“Stars and bars 2”) Suppose x1,x2,...,x, are nonnegative integers and
consider the equation
r1+x2+...2p,=n, nelN. (1.2)

There are (njizl) possible solutions to equation (1.2).

Summary Count ways to choose k objects from a population of n distinguishable objects:

Order matters Order doesn’t matter
With replacement nk Stars & bars
Without replacement n(n—1)...(n—k+1) ()




Chapter 2

Axioms of Probability &
Conditional Probability

Definition 3 (Probability Space) A probability space is a triple (Q, F,P) where

e () is the sample space of the random experiment to be modeled, i.e. the set of all possible
outcomes of the experiment,

e F is a collection of subsets of ) (these subsets are called events) to which we may assign
probabilities,

e P is a probability measure, i.e. P : F — [0,1] or (equivalently) P is a function which
maps events to their probabilities.

Note If Q is a finite set, then we always simply choose F = 29 (the set of all subsets of Q).

Proposition 5 (DeMorgan’s Laws) If E1,..., E, be a collection of sets, then

n ¢ n
i=1 i=1
where E denotes the complement of the set E;.

Definition 4 (Axioms of Probability) Suppose P : F +— [0,1] where F is a collection of
subsets of a set & which we call the sample space. P is a probability measure if:

(i.) P[Q] =1,
(ii.) 0 <P[E] <1 for each E € F,
(ii.)
P

UE| =>_PE]
=1 i=1

for any sequence of sets {E;}7_, € F such that

EiﬂEj:(b for i #£j.
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Proposition 6 Let (Q,F,P) be a probability space.
(i.) For any set E € F, PI[E] =1 —P[E].
(ii.) If D,E € F and D C E, then P[D] < P[E.
(iii.) If D,E € F, then P[D U E] = P[D] + P[E] — P[D N E].

Definition 5 (Uniform Probability Space) If Q2 is a finite set with || = n, label the
elements of Q as {1},{2},...,{n} and choose the probability measure P such that

P[{1}] = P[{2}] = - = Pl{n}].

We call this the uniform probability space (on §2).

Let (2, F,P) be a probability space with E, F' € F such that P[F] > 0.

Definition 6 (Conditional Probability) The probability of E given F is denoted by P|E|F|

and is given by the formula
P[ENF]

PIEIF] = =5

Proposition 7 The probability measure given by P[-|F] obeys the axioms of probability, i.e.
it 1s a valid probability measure.

Theorem 4 (Baye’s Theorem)

pig|F] = DEIEIPLE] I‘P’[EILI]P[E]

Definition 7 A collection of events {E;}2, is a partition of the sample space Q) if

UEi=Q and ENE;=0fori#j.
i=1

Proposition 8 (Law of Total Probability) If {E;}°, be a partition of Q and suppose F'
is another event in F, then

PlF] = ZP[F\EJ PE;]
i=1

Definition 8 Two events E and F' are said to be independent if
P[E N F| = P[E]P[F].
Proposition 9 If the events E and F' are independent, then
(i.) E and F¢ are independent,

(ii.) E° and F are independent,

(iii.) E° and F¢ are independent.



Chapter 3

Random Variables

Suppose Q is a finite or countable set and choose F = 2. Let P denote a probability measure
on (92, F).

Definition 9 (Random Variable) A random variable is a map from the sample space S to
some set T, i.e. X :Q—1T.

Definition 10 Given a random variable X : Q +— T, the law of X is given by
PIX c Al=P{weQ: X(w)e A}, AeT.

The family {P[X = j], j € T' := X(Q)} is sometimes called the law of X and defines a new
probability measure on T (the range of X ).

Definition 11 As defined above, a random variable X can take on at most countably many
values (a finite number or countably infinitely many) and random variables with this property
are called discrete.

The law of a discrete random variable is called its probability mass function (PMF), i.e.
Ix(x)=PX =zx|, zeT.

The cumulative distribution function (CDF) of X is given by
Fx(z)=PX <z], zeT.

The expectation of X is given by

E[X] =) X(w)Plw].

weN

Proposition 10 (Law of the Unconscious Statistician) If X : Q — T is a discrete ran-
dom variable and g : R — R is any real-valued function, then

Elg(X)] = > g(x) fx(x).
zeT”’

In particular,

E[X] =) zfx(x).

zeT’



Corollary 3 If X is a discrete random variable with finite expectation and a,b € R, then

ElaX + b = aE[X] + b.

Definition 12 (Variance) If X : Q — T is a discrete random variable, then its variance,
denoted Var(X), is given by

Var(X) =E [(X — E[X])ﬂ .

3.1 Discrete Random Variables

Notation: We use the symbol “~” to denote that a random variable has a given (typically
named) distribution. For example, X ~ Binomial(n,p) means that X is a Binomial random
variable with parameters n (number of trials) and p (probability of success).

Proposition 11 If X1, Xy, ..., X, are Bernoulli random variables with parameter p € [0, 1],
then

Z X; ~ Binomial(n, p).
i=1

Definition 13 (Bernoulli) A random variable X is Bernoulli(p) distributed for some p €
[0,1] if it has a PMF of the form

PX=1=p, PX=0=1-p.

Definition 14 (Binomial) A random variable X is Binomial(n,p) distributed for some p €
[0,1] and some n € {1,2,3,...} if it has a PMF of the form

n

PIX = k] = (k

)pk(l —p)" k. k=0,1,2,....

Definition 15 (Poisson) A random variable X is Poisson()) distributed for some X € (0, 00)
if it has a PMF of the form

-\ k&
P[X:k]:ek!)\ . k=0,1,2,....

Definition 16 (Hypergeometric) A random variable X is Hypergeometric(N,m,n) dis-
tributed for N € N, m € {0,1,...,N} and n € N if it has a PMF of the form

(1) G )

()

P[X = k] = k=0,1,2,...,n,

where we use the convention that

<Z>:0ifk:<00rk:>n.
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Proposition 12 Suppose X1, ..., X, are discrete random variables with finite expectation on
a common probability space (2, F,P). Then

E [Zn: Xi] = zn: E[X].
=1 =1

Proposition 13 Let X be a discrete real-valued random wariable with finite variance and
suppose a,b € R. Then
VarlaX +b] = o Var[X].

Definition 17 (CDF) If X is a real-valued random variable on some probability space, then
its cumulative distribution function Fx (CDF) is given by

Fx(z) =PX <z]=P[X € (—o0,2]], z€R

3.2 Continuous Random Variables

Definition 18 (Continuous r.v. - informal definition) We will call a real-valued random
variable X a continuous random wvariable if it can take on uncountably many values and its
CDF can be written in the form

Fy(z) = P[X € (~00,2]] = / Ixw)dy, weR,

for some nonnegative piecewise continuous function fx. We will call fx the probability density

function (PDF) of X.

Proposition 14 Suppose X is a continuous random variable with CDF denoted Fx and PDF
denoted fx. Then

(i.) Fx(o0) =1,

(ii.) for any a € R,

(ii.) for any real numbers a and b with a < b,
b
PIX € [a,0]] = P[X € [a,0)] = P[X € (a,b]] = P[X € (a,0)] =/ fx(y) dy,

(v.) for any a € R,
P[X > a] :/ f(z)dz.

Definition 19 (Expectation/Variance) Suppose X is a continuous random variable with
PDF denoted fx. The expected value of X is given by

E[X] = /OO 2 fx(2) da.

—0o0
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Like in the discrete case, the variance of X is given by
VarlX] = E[(X — p)?] .
where p = E[X].

Proposition 15 Suppose X is a continuous random variable with PDF denoted fx and let g
be a function from R to R. Then

E@@ﬂ]zjflmwﬁﬂ@dx

Definition 20 A continuous random variable X has a mormal distribution with parameters
pER and o >0 (written X ~ N(u,0?) if it’s PDF is given by
1 —(e—p)?
fx(@) = ——e 2t , z€eR

V2mo?
Proposition 16 If X ~ N(u,0?), then

(i.) X +a~ N(u+a,o?), for any a € R,
(ii.) aX ~ N(ap,a?c?), for any a € R,
(iii.) aX +a ~ N(ap+ a,a?0?), for any o,a € R,
(iv.) (X —p)/o~ N(0,1).
Proposition 17 Suppose X is a continuous random variable with PDF fx and let g : R — R

be a strictly monotone (increasing or decreasing) function which is differentiable. Then the
PDF of the random variable Y = g(X) is given by

fy(y) _ {fX (g_l(y)) ‘%g_l(y)’7 ?J:g(ﬂf) fOT some z € R,

0, else.

Definition 21 (Hazard Rate) If X is a continuous random variable with PDF fx and CDF
Fx, then the hazard rate function of X is given by

L PX ettt X >t . PXeltt+e)]  fx(t)
hix () = limy . " TS i@ SR

Remark 1 Think about X in the hazard rate definition as a random variable modeling the life
span of some device. The hazard rate is the instantaneous rate of failure of the device at time
t given that it has lived up until time t.

Proposition 18 If X is a nonnegative and continuous random variable with hazard rate func-
tion given by hx(t) for t >0, then the CDF of X is given by

Fx(t)=1—e Johx®ds 4>,

Method for Normal Approximations:

If we want to approximate a distribution by a normal distribution, we should match the mean
and variance of the normal to the distribution which is to be approximated. For example, if
I want to approximate a Binomial(n,p) distribution by a normal, I should take p = np and

0% = np(1 - p).
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3.3 Jointly Distributed Random Variables

Proposition 19 Let X and Y be independent discrete random variables with PMFs fx and
fy respectively. Then the PMF of Z = X +Y is given by

f2(2) =PX +Y =21 = fx(z—y)fr(v)-
Yy

Proposition 20 Let X and Y be independent continuous random wvariables with PDFs fx
and fy respectively. Then the PDF of Z = X +Y is given by

ﬁ@ZK%h@—wﬁ@@hzeR

Proposition 21 If Xi,..., X, are independent normally distributed random variables where
X; has mean p; and variance JZ.Q, then

X1+ Xo+... Xy ~N (Z“ Za§>.
=1 i=1

Definition 22 (Conditional PMF) If X andY are discrete jointly distributed random vari-

ables with joint PMF fxy, then the conditional PMF of X given'Y is given by

PIX =i, Y =4 _ fxy(iJ)
PlY = j] fy (7)

Definition 23 (Conditional Expectation - discrete case) If X and Y are discrete ran-
dom variables with fx|y the conditional PMF of X givenY, then we can define the conditional
expectation of X given Y =1y by

EXY =y] = Z$fX\Y(93>y)-

T

Definition 24 (Conditional PDF) If X and Y are continuous jointly distributed random
variables with joint PDF fxy, then the conditional PDF of X given'Y is given by
_ fxy(z,y)

Ixpy(z,y) = ) (z,y) € R

Proposition 22 If X and Y are continuous random variables with the conditional PDF of X
gwen'Y denoted by fx|y, then

PIX € DIY =y = [ fuv(aly) ds

Definition 25 (Conditional Expectation - continuous case) If X andY are continuous
Jointly distributed random variables with fxy the conditional PDF of X givenY, then we can
define the conditional expectation of X given Y =1y by

[e.e]

Emwzm:/ ey () de.

—00
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Chapter 4

Moment Generating Functions &
Limit Theorems

Definition 26 If X is a (discrete or continuous) r.v., then the n-th moment of X is given by

E[X"], for eachn € N.

Definition 27 (Moment Generating Function) If X is a (discrete or continuous) random
variable, then the moment generating function of X is given by

Mx(t) = E[e"X], teR.

Proposition 23 A random variable is uniquely specified by its moment generating function
(MGF), i.e. if two random variables have the same MGF, then they have the same distribution.

Proposition 24 If X is a (discrete or continuous) random variable with MGF' given by Mx (t)
for allt > 0, then

M) =EXT,

where M)((n) denotes the n-th derivative of the MGF.

Proposition 25 If X and Y are (discrete or continuous) independent random variables, then

Mx+y(t) = Mx(t) My(t), t e R.

Definition 28 If E is an event, then the indicator function of E is given by

1, w ek,
1g =
0, wé¢E.

Proposition 26 (Markov’s Inequality) If X is a nonnegative random variable with finite
expected value, then
E[X]

PIX >k <=, k>0
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Proposition 27 (Chebyshev’s Inequality) If X is a random variable with finite expected
value j and finite variance o2, then

0_2

P[IX —pul >k < 550 k>0,

Definition 29 We say the sequence of random variables (X,),-, converges in probability to
the random variable X if for each ¢ > 0
lim P[|X,, — X| > ¢ =0.

n—o0

Proposition 28 If X and Y are independent random variables, then

VarlX + Y] = Var{X] + Var]Y].

Theorem 5 (Weak Law of Large Numbers) Let Xi,...,X,, be independent and identi-

cally distributed random wvariables with finite expected value p and finite variance. Then
—1 . ..

n= Y i Xn converges in probability to p as n — 0.

Definition 30 (Convergence in Distribution) Let (X,,),2, be a sequence of random vari-
ables with F,, denoting the CDF of X,, for each n € N. Suppose X is another random variable
with CDF given by Fx. We say that X, tends to X in distribution as n — oo if

lim F,(x) = F(x) for each x € R.

n—oo

Proposition 29 Suppose that (X,,),—; is a sequence of random variables each with moment
generating function My, and X is a random variable with moment generating function Mx
such that

lim Mx, (t) = Mx(t) for eacht € R.

n—o0

Then X,, tends to X in distribution as n — oo.

Theorem 6 (Central Limit Theorem) Let (X,,) 2 | be a sequence of independent and iden-
tically distributed random variables with (finite) expected value p and variance o < oo (finite
variance is a key hypothesis). Define

_Xit Xy —np
N ov/n

and let Z denote a standard normal random variable (i.e Z ~ N(0,1)). Then

Sp for each n € N,

lim Fg, (x) = Fz(z) for each x € R.

n—oo

In other words, S,, tends to a standard normal random variable in distribution as n — 0o.
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