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Chapter 1

Combinatorics

Theorem 1 (Fundamental Principle of Counting) Suppose we conduct r ∈ N experi-
ments and that experiment i ∈ {1, . . . , r} has ni possible outcomes. Then there are

n1 × n2 × · · · × nr

possible outcomes of the r experiments.

Corollary 1 There are n! := n(n− 1)(n− 2) . . . 3.2.1 ways to arrange n ∈ N distinct objects,
i.e. when we can distinguish between each of the n objects.

Corollary 2 Suppose we have r different types of objects with n1 objects of type 1, n2 objects
of type 2, and so on, with ni objects of type i ∈ {1, . . . , r}. If n1 +n2 + · · ·+nr = n, then there
are

n!

n1!n2! . . . nr!

distinct arrangements of the total collection of n objects.

Definition 1 If n > k with n, k ∈ N, then we define the binomial coefficients by the formula:(
n

k

)
=

n!

(n− k)! k!
.

Proposition 1 Suppose n > k with n, k ∈ N. There are
(
n
k

)
distinct groups of k objects that

can be chosen from a collection of n distinguishable objects, i.e. a distinct group means that
the groupings are unique up to permutation of their elements.

Theorem 2 (Binomial Theorem) If x, y ∈ R and n ∈ N, then

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Definition 2 Consider r natural numbers n1, n2, . . . , nr such that n1 +n2 + · · ·+nr = n. The
multinomial coefficients are defined by the formula:(

n

n1, n2, . . . , nr

)
:=

n!

n1!n2! . . . nr!
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Proposition 2 If we divide a collection of n distinguishable objects into r groups of sizes
n1, n2, . . . , nr, i.e. n1 +n2 + · · ·+nr = n, then there are

(
n

n1,n2,...,nr

)
possible distinct groupings.

Theorem 3 (Multinomial Theorem) If x1, x2, . . . , xr ∈ R and n ∈ N, then

(x1 + x2 + · · ·+ xr)
n =

∑
n1,n2,...,nr∈N:
n1+n2+···+nr=n

(
n

n1, n2, . . . , nr

)
xn1

1 xn2
2 . . . xnrr .

Proposition 3 (“Stars and bars 1”) Suppose x1, x2, . . . , xr are positive integers and con-
sider the equation

x1 + x2 + . . . xr = n, n ∈ N. (1.1)

There are
(
n−1
r−1

)
possible solutions to equation (1.1).

Proposition 4 (“Stars and bars 2”) Suppose x1, x2, . . . , xr are nonnegative integers and
consider the equation

x1 + x2 + . . . xr = n, n ∈ N. (1.2)

There are
(
n+r−1
r−1

)
possible solutions to equation (1.2).

Summary Count ways to choose k objects from a population of n distinguishable objects:

Order matters Order doesn’t matter

With replacement nk Stars & bars
Without replacement n(n− 1) . . . (n− k + 1)

(
n
k

)
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Chapter 2

Axioms of Probability &
Conditional Probability

Definition 3 (Probability Space) A probability space is a triple (Ω,F ,P) where

• Ω is the sample space of the random experiment to be modeled, i.e. the set of all possible
outcomes of the experiment,

• F is a collection of subsets of Ω (these subsets are called events) to which we may assign
probabilities,

• P is a probability measure, i.e. P : F 7→ [0, 1] or (equivalently) P is a function which
maps events to their probabilities.

Note If Ω is a finite set, then we always simply choose F = 2Ω (the set of all subsets of Ω).

Proposition 5 (DeMorgan’s Laws) If E1, . . . , En be a collection of sets, then(
n⋃
i=1

Ei

)c
=

n⋂
i=1

Eci

where Eci denotes the complement of the set Ei.

Definition 4 (Axioms of Probability) Suppose P : F 7→ [0, 1] where F is a collection of
subsets of a set Ω which we call the sample space. P is a probability measure if:

(i.) P[Ω] = 1,

(ii.) 0 ≤ P[E] ≤ 1 for each E ∈ F ,

(iii.)

P

[
n⋃
i=1

Ei

]
=

n∑
i=1

P[Ei],

for any sequence of sets {Ei}ni=1 ∈ F such that

Ei ∩ Ej = ∅ for i 6= j.
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Proposition 6 Let (Ω,F ,P) be a probability space.

(i.) For any set E ∈ F , P[Ec] = 1− P[E].

(ii.) If D,E ∈ F and D ⊂ E, then P[D] ≤ P[E].

(iii.) If D,E ∈ F , then P[D ∪ E] = P[D] + P[E]− P[D ∩ E].

Definition 5 (Uniform Probability Space) If Ω is a finite set with |Ω| = n, label the
elements of Ω as {1}, {2}, . . . , {n} and choose the probability measure P such that

P[{1}] = P[{2}] = · · · = P[{n}].

We call this the uniform probability space (on Ω).

Let (Ω,F ,P) be a probability space with E,F ∈ F such that P[F ] > 0.

Definition 6 (Conditional Probability) The probability of E given F is denoted by P[E|F ]
and is given by the formula

P[E|F ] =
P[E ∩ F ]

P[F ]
.

Proposition 7 The probability measure given by P[ · |F ] obeys the axioms of probability, i.e.
it is a valid probability measure.

Theorem 4 (Baye’s Theorem)

P[E|F ] =
P[F |E]P[E]

P[F ]
.

Definition 7 A collection of events {Ei}∞i=1 is a partition of the sample space Ω if

∞⋃
i=1

Ei = Ω and Ei ∩ Ej = ∅ for i 6= j.

Proposition 8 (Law of Total Probability) If {Ei}∞i=1 be a partition of Ω and suppose F
is another event in F , then

P[F ] =

∞∑
i=1

P[F |Ei]P[Ei]

Definition 8 Two events E and F are said to be independent if

P[E ∩ F ] = P[E]P[F ].

Proposition 9 If the events E and F are independent, then

(i.) E and F c are independent,

(ii.) Ec and F are independent,

(iii.) Ec and F c are independent.
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Chapter 3

Random Variables

Suppose Ω is a finite or countable set and choose F = 2Ω. Let P denote a probability measure
on (Ω,F).

Definition 9 (Random Variable) A random variable is a map from the sample space Ω to
some set T , i.e. X : Ω 7→ T .

Definition 10 Given a random variable X : Ω 7→ T , the law of X is given by

P[X ∈ A] = P [{ω ∈ Ω : X(ω) ∈ A}] , A ∈ T.

The family {P[X = j], j ∈ T ′ := X(Ω)} is sometimes called the law of X and defines a new
probability measure on T ′ (the range of X).

Definition 11 As defined above, a random variable X can take on at most countably many
values (a finite number or countably infinitely many) and random variables with this property
are called discrete.

The law of a discrete random variable is called its probability mass function (PMF), i.e.

fX(x) = P[X = x], x ∈ T ′.

The cumulative distribution function (CDF) of X is given by

FX(x) = P[X ≤ x], x ∈ T ′.

The expectation of X is given by

E[X] :=
∑
ω∈Ω

X(ω)P[ω].

Proposition 10 (Law of the Unconscious Statistician) If X : Ω 7→ T is a discrete ran-
dom variable and g : R 7→ R is any real-valued function, then

E [g(X)] =
∑
x∈T ′

g(x) fX(x).

In particular,

E [X] =
∑
x∈T ′

x fX(x).
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Corollary 3 If X is a discrete random variable with finite expectation and a, b ∈ R, then

E[aX + b] = aE[X] + b.

Definition 12 (Variance) If X : Ω 7→ T is a discrete random variable, then its variance,
denoted Var(X), is given by

Var(X) = E
[
(X − E[X])2

]
.

3.1 Discrete Random Variables

Notation: We use the symbol “∼” to denote that a random variable has a given (typically
named) distribution. For example, X ∼ Binomial(n, p) means that X is a Binomial random
variable with parameters n (number of trials) and p (probability of success).

Proposition 11 If X1, X2, . . . , Xn are Bernoulli random variables with parameter p ∈ [0, 1],
then

n∑
i=1

Xi ∼ Binomial(n, p).

Definition 13 (Bernoulli) A random variable X is Bernoulli(p) distributed for some p ∈
[0, 1] if it has a PMF of the form

P[X = 1] = p, P[X = 0] = 1− p.

Definition 14 (Binomial) A random variable X is Binomial(n, p) distributed for some p ∈
[0, 1] and some n ∈ {1, 2, 3, . . . } if it has a PMF of the form

P[X = k] =

(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . . .

Definition 15 (Poisson) A random variable X is Poisson(λ) distributed for some λ ∈ (0,∞)
if it has a PMF of the form

P[X = k] =
e−λλk

k!
, k = 0, 1, 2, . . . .

Definition 16 (Hypergeometric) A random variable X is Hypergeometric(N,m, n) dis-
tributed for N ∈ N, m ∈ {0, 1, . . . , N} and n ∈ N if it has a PMF of the form

P[X = k] =

(
m
k

)(
N−m
m−k

)(
N
n

) , k = 0, 1, 2, . . . , n,

where we use the convention that(
n

k

)
= 0 if k < 0 or k > n.
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Proposition 12 Suppose X1, . . . , Xn are discrete random variables with finite expectation on
a common probability space (Ω,F ,P). Then

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].

Proposition 13 Let X be a discrete real-valued random variable with finite variance and
suppose a, b ∈ R. Then

Var[aX + b] = a2Var[X].

Definition 17 (CDF) If X is a real-valued random variable on some probability space, then
its cumulative distribution function FX (CDF) is given by

FX(x) = P[X ≤ x] = P [X ∈ (−∞, x] ] , x ∈ R.

3.2 Continuous Random Variables

Definition 18 (Continuous r.v. - informal definition) We will call a real-valued random
variable X a continuous random variable if it can take on uncountably many values and its
CDF can be written in the form

FX(x) = P [X ∈ (−∞, x] ] =

∫ x

−∞
fX(y) dy, x ∈ R,

for some nonnegative piecewise continuous function fX . We will call fX the probability density
function (PDF) of X.

Proposition 14 Suppose X is a continuous random variable with CDF denoted FX and PDF
denoted fX . Then

(i.) FX(∞) = 1,

(ii.) for any a ∈ R,
P[X = a] = 0,

(iii.) for any real numbers a and b with a < b,

P[X ∈ [a, b] ] = P[X ∈ [a, b) ] = P[X ∈ (a, b] ] = P[X ∈ (a, b) ] =

∫ b

a
fX(y) dy,

(iv.) for any a ∈ R,

P[X > a] =

∫ ∞
a

f(x) dx.

Definition 19 (Expectation/Variance) Suppose X is a continuous random variable with
PDF denoted fX . The expected value of X is given by

E[X] =

∫ ∞
−∞

x fX(x) dx.
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Like in the discrete case, the variance of X is given by

Var[X] = E
[
(X − µ)2

]
,

where µ = E[X].

Proposition 15 Suppose X is a continuous random variable with PDF denoted fX and let g
be a function from R to R. Then

E [g(X)] =

∫ ∞
−∞

g(x) fX(x) dx.

Definition 20 A continuous random variable X has a normal distribution with parameters
µ ∈ R and σ > 0 (written X ∼ N(µ, σ2) if it’s PDF is given by

fX(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , x ∈ R.

Proposition 16 If X ∼ N(µ, σ2), then

(i.) X + a ∼ N(µ+ a, σ2), for any a ∈ R,

(ii.) αX ∼ N(αµ, α2σ2), for any α ∈ R,

(iii.) αX + a ∼ N(αµ+ a, α2σ2), for any α, a ∈ R,

(iv.) (X − µ)/σ ∼ N(0, 1).

Proposition 17 Suppose X is a continuous random variable with PDF fX and let g : R 7→ R
be a strictly monotone (increasing or decreasing) function which is differentiable. Then the
PDF of the random variable Y = g(X) is given by

fY (y) =

{
fX
(
g−1(y)

) ∣∣∣ ddyg−1(y)
∣∣∣ , y = g(x) for some x ∈ R,

0, else.

Definition 21 (Hazard Rate) If X is a continuous random variable with PDF fX and CDF
FX , then the hazard rate function of X is given by

hX(t) = lim
ε→0

P[X ∈ [t, t+ ε) |X > t]

ε
= lim

ε→0

P[X ∈ [t, t+ ε)]

εP[X > t]
=

fX(t)

1− FX(t)
, t ∈ R.

Remark 1 Think about X in the hazard rate definition as a random variable modeling the life
span of some device. The hazard rate is the instantaneous rate of failure of the device at time
t given that it has lived up until time t.

Proposition 18 If X is a nonnegative and continuous random variable with hazard rate func-
tion given by hX(t) for t ≥ 0, then the CDF of X is given by

FX(t) = 1− e−
∫ t
0 hX(s) ds, t ≥ 0.

Method for Normal Approximations:

If we want to approximate a distribution by a normal distribution, we should match the mean
and variance of the normal to the distribution which is to be approximated. For example, if
I want to approximate a Binomial(n, p) distribution by a normal, I should take µ = np and
σ2 = np(1− p).
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3.3 Jointly Distributed Random Variables

Proposition 19 Let X and Y be independent discrete random variables with PMFs fX and
fY respectively. Then the PMF of Z = X + Y is given by

fZ(z) = P[X + Y = z] =
∑
y

fX(z − y)fY (y).

Proposition 20 Let X and Y be independent continuous random variables with PDFs fX
and fY respectively. Then the PDF of Z = X + Y is given by

fZ(z) =

∫ ∞
−∞

fX(z − y) fY (y) dy, z ∈ R.

Proposition 21 If X1, . . . , Xn are independent normally distributed random variables where
Xi has mean µi and variance σ2

i , then

X1 +X2 + . . . Xn ∼ N

(
n∑
i=1

µi,

n∑
i=1

σ2
i

)
.

Definition 22 (Conditional PMF) If X and Y are discrete jointly distributed random vari-
ables with joint PMF fX,Y , then the conditional PMF of X given Y is given by

fX|Y (i, j) = P[X = i |Y = j ] =
P[X = i, Y = j]

P[Y = j]
=
fX,Y (i, j)

fY (j)
, ∀ (i, j).

Definition 23 (Conditional Expectation - discrete case) If X and Y are discrete ran-
dom variables with fX|Y the conditional PMF of X given Y , then we can define the conditional
expectation of X given Y = y by

E[X|Y = y] =
∑
x

xfX|Y (x, y).

Definition 24 (Conditional PDF) If X and Y are continuous jointly distributed random
variables with joint PDF fX,Y , then the conditional PDF of X given Y is given by

fX|Y (x, y) =
fX,Y (x, y)

fY (y)
, (x, y) ∈ R2.

Proposition 22 If X and Y are continuous random variables with the conditional PDF of X
given Y denoted by fX|Y , then

P[X ∈ D |Y = y] =

∫
D
fX|Y (x|y) dx.

Definition 25 (Conditional Expectation - continuous case) If X and Y are continuous
jointly distributed random variables with fX|Y the conditional PDF of X given Y , then we can
define the conditional expectation of X given Y = y by

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x, y) dx.
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Chapter 4

Moment Generating Functions &
Limit Theorems

Definition 26 If X is a (discrete or continuous) r.v., then the n-th moment of X is given by

E [Xn] , for each n ∈ N.

Definition 27 (Moment Generating Function) If X is a (discrete or continuous) random
variable, then the moment generating function of X is given by

MX(t) = E[etX ], t ∈ R.

Proposition 23 A random variable is uniquely specified by its moment generating function
(MGF), i.e. if two random variables have the same MGF, then they have the same distribution.

Proposition 24 If X is a (discrete or continuous) random variable with MGF given by MX(t)
for all t ≥ 0, then

M
(n)
X (t)

∣∣∣
t=0

= E [Xn] ,

where M
(n)
X denotes the n-th derivative of the MGF.

Proposition 25 If X and Y are (discrete or continuous) independent random variables, then

MX+Y (t) = MX(t)MY (t), t ∈ R.

Definition 28 If E is an event, then the indicator function of E is given by

1E =

{
1, ω ∈ E,
0, ω /∈ E.

Proposition 26 (Markov’s Inequality) If X is a nonnegative random variable with finite
expected value, then

P[X ≥ k] ≤ E[X]

k
, k > 0.
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Proposition 27 (Chebyshev’s Inequality) If X is a random variable with finite expected
value µ and finite variance σ2, then

P [|X − µ| > k] ≤ σ2

k2
, k > 0.

Definition 29 We say the sequence of random variables (Xn)∞n=1 converges in probability to
the random variable X if for each ε > 0

lim
n→∞

P[|Xn −X| > ε] = 0.

Proposition 28 If X and Y are independent random variables, then

Var[X + Y ] = Var[X] + Var[Y ].

Theorem 5 (Weak Law of Large Numbers) Let X1, . . . , Xn be independent and identi-
cally distributed random variables with finite expected value µ and finite variance. Then
n−1

∑n
i=1Xn converges in probability to µ as n→∞.

Definition 30 (Convergence in Distribution) Let (Xn)∞n=1 be a sequence of random vari-
ables with Fn denoting the CDF of Xn for each n ∈ N. Suppose X is another random variable
with CDF given by FX . We say that Xn tends to X in distribution as n→∞ if

lim
n→∞

Fn(x) = F (x) for each x ∈ R.

Proposition 29 Suppose that (Xn)∞n=1 is a sequence of random variables each with moment
generating function MXn and X is a random variable with moment generating function MX

such that
lim
n→∞

MXn(t) = MX(t) for each t ∈ R.

Then Xn tends to X in distribution as n→∞.

Theorem 6 (Central Limit Theorem) Let (Xn)∞n=1 be a sequence of independent and iden-
tically distributed random variables with (finite) expected value µ and variance σ2 <∞ (finite
variance is a key hypothesis). Define

Sn :=
X1 + . . . Xn − nµ

σ
√
n

for each n ∈ N,

and let Z denote a standard normal random variable (i.e Z ∼ N(0, 1)). Then

lim
n→∞

FSn(x) = FZ(x) for each x ∈ R.

In other words, Sn tends to a standard normal random variable in distribution as n→∞.
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