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Chapter 1

Vectors and Geometry

Definition 1 The Cartesian product of two sets A and B, denoted by A x B, is the set of all
ordered pairs (a,b) such that a € A and b € B, i.e.

Ax B :={(a,b):a € A, bec B}.
Definition 2 R? =R xR xR = {(2,9,2) : 2 € R, y € R, z € R}.

Definition 3 A surface S in R? is a set of points obeying a relation of the form f(z,y,z) =0
for some smooth function f :R3 — R.

Example 1 (Surfaces in R?) A sphere of radius v with center (xo, Yo, 20) is the set of all
points (z,y, z) satisfying the equation (x — x0)? + (y — yo)? + (2 — 23) = r2.

A cylinder in R® centered on the z—awxis with radius r and height h is the set of all points
(z,y,2) obeying x> +y*> =r? and 0 < z < h. The base of this cylinder sits on the xy-plane.

Definition 4 The Euclidean distance between two points, say (xo,z, Y0, 20) and (x1, Y1, 21),
in R3 is given by the formula

d ((zo, Y0, 20), (x1, 91, 21)) = V(20 — 21)2 + (Yo — ¥1)% + (20 — 21)%.

Definition 5 A vector is a quantity with both a magnitude and a direction (e.g. a force). We
will consider points in R3 as vectors — the direction of a vector @ = (z,y, 2) is the direction of
the line segment connecting (0,0,0) to (z,y,z) and the magnitude of the vector @ is the length
of this line segment, i.e. the magnitude of @ is given by

@] = a2 4+ y? + 22,

Definition 6 (Vector operations) If @ = (a1, az, as) and b = (b, ba, bs) are vectors in R3,
then
a+b= (a1 + b1, az + b, a3 + b3) [Vector addition]

and
cd = (cay, cag, caz) for each c € R, [Scalar multiplication]

where the number c is referred to as a scalar in this context.
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Figure 1.1: Left: Parallelogram law for vector addition. Right: b—a is the vector corresponding
the line segment connecting the endpoint of @ to the endpoint of b.

Proposition 1 (Properties of Vector Operations) If d and b denote vectors and
0 =(0,0,0) denotes the zero vector, then

(vi) (c+d)d = cd+da
(vii) (cd)d = c(da)

Definition 7 The standard basis vectors in R® are given by
i=(1,0,0), j=(0,1,0), k=(0,0,1).
Any vector @ = (a1, ag, az) can be represented in terms of the standard basis vectors as follows:
6:a15+a25+a3E

-

Definition 8 (Dot Product) The dot product of two wvectors d = (a1, a2, ag) and b =
(b1, ba, b3) is the scalar a - b whose value is given by the formula

&'-E:alb1+a2b2+a3b3.

Proposition 2 (Properties of the Dot Product) Suppose that veca and vech are vectors
and c € R. Then

1. @-a@=|a|?



Theorem 1 If d and b are vectors with an angle 0 between them, then
@-b=|al|b|cos,

and hence, if @ and b are both nonzero,
ab
0 =cos! (_,_,>
|l |b]

Corollary 1 Two wectors are said to be orthogonal if the angle between them is 90 degrees
(the zero vector is considered orthogonal to every other vector).

Two vectors are orthogonal if and only if their dot product is zero.

Definition 9 Let @ and b denote vectors. The scalar projection ofg onto @ is given by

- @b
compz b = a|7| [scalar]
and the vector projection ofg onto d is given by
B
projz b = TC_L,TEL’ [vector].

Definition 10 The cross product of the vectors @ = (a1, ag, ag) and b = (b1, ba, b3) is the
vector @ X b given by the formula

5Xg:(a2b3—b2a3, blag—albg, ale—Gle).

”

@xbis orthogonal to both @ and b and its direction is given by the “right-hand rule”.
Theorem 2 If d and b are vectors in R3 with an angle 0 between them, then

@ x b| = |a@]|b| sin .
Corollary 2 Two vectors d and b in R® are parallel if and only if @ x b=0.

Proposition 3 (Properties of the Cross Product) Let @, b and & denote vectors in R3,
and ¢ a scalar. Then

(i) @xb=—-bxa



Proposition 4 In R3, the volume V of the parallelepiped determined by the vectors a, b and
C is the magnitude of their scalar triple product, which is given by

6-(5><5>’

V:




Chapter 2

Vector—valued Functions

Definition 11 The parametric equation of the line L through the point 7o = (xo, Yo, 20) with
direction vector ¥ = (a, b, ¢) is given by

7(t) = (zo + at, yo + bt, z0 +ct) =70 +tv, teR.
The symmetric equations of the line L are given by

T—%o _Y—Y _ 22— %20
- - b
a b c

provided that a, b and ¢ are all nonzero.

Definition 12 The plane through 7 = (zo, Yo, 20) with normal vector i = (a, b, ¢) is given
by the set of vectors ¥ = (x, y, z) obeying the equation

—

n- (7 —170) = a(z — x0) + b(y — yo) + c(z — 20) = 0.

Proposition 5 The distance from the point (x1, y1, 21) to the plane with equation ax + by +
cz =d is given by
laxi + by + cz1 + d|

va?+b%+c?

Definition 13 A vector-valued function 7 : R — R3 is given by

where x : R— R, y:R+— R and z : R +— R are called the component functions of 7.
Definition 14 (Limits and Continuity) If 7(t) = (z(t), y(t), 2(t)), then
Jim 7(t) = (tlgg z(t), lim y(t), lim z(t)> :

assuming the componentwise limits exist and 7 is continuous at a € R if limy_,, 7(t) = 7(a).



Definition 15 If 7#(t) = (x(t), y(t), 2(t)), then the derivative of ¥ is given by

SR = (0, (1), 2 (1)

assuming the component functions of 7 are differentiable.

Proposition 6 (Derivatives of Vector Functions) Let 4 and ¥ be vector valued functions,
f a scalar function and ¢ a scalar. Then

(i) g (a(t) +(t) = Git) + Go(t)

(i) 4 (cu(t)) = cLii(t)

(iii) g (fO)a(t) = f()a(t) + f(t) Fat)

(iv) & (a(t) - 6(t)) = Fa(t) - o(t) +a(t) - Fo(t)
(v) L (a(t) x 5(t)) = Lia(t) x 0(t) + dQ(t) x LT(t)
(vi) & (@(f(1)) = f'(t)a’ (f(t))

Suppose that 7(t) = (z(t), y(t), z2(t)), where x : R — R, y : R+— R and z : R — R. We also
ask that 2/, ¢/ and 2’ are continuous.

Proposition 7 (Integration of vector functions)

/:F(t)dt:(/abx(t)dt, /aby(t)dt, /abz(t)dt>, bR

Definition 16 The length of the curve C = {(x,y,2) : (x,y,2) = 7(t) for some t € [a, b} is
given by

b b
L:/ \/(x’(t))2+(y’(t))2++(z’(t))2dt:/ 7(8)] dt.

Definition 17 The arc length function s measures the length of the curve between a starting
point t = a and some variable endpoint:

s(t) ;:/ 7(6)] dt, ¢ € [a, ).

A curve traced out by T is parameterised with respect to arc length by computing the new
parameterisation p:

plt) = (s~ (t).

Definition 18 (Curvature) The curve C traced out by 7 is smooth if ', y' and 2’ are con-
tinuous and 7'(t) # 0. The unit tangent vector to C at a point t is then given by




The curvature of C' at t is denoted by x and is given by
(1)
IGEOIE

JF
ds

k(t) ==

where s denotes the arc length function.

Theorem 3 The curvature can be expressed directly in terms of the vector fuction ¥ which
paramterises the curve as follows (if 7 is twice differentiable):
7'(t) x 7" (t
= P00
|7 (t)]

Definition 19 The normal vector N and Binormal vector B to a curve traced out by a function

7 are given by
T'(t S S o
: ®) B(t) :=T(t) x N(t).

The normal plane to a curve at a point is the plane containing the vectors N and B - it

contains all lines orthogonal to T. The osculating plane to a curve at a given point is the
plane which contains T and N — it is the plane that comes closest to containing the part of the

curve at the chosen point.



Chapter 3

Partial Differentiation

Definition 20 For a given natural number n we define the set R™ to be the n—fold Cartesian
product of R with itself, i.e

R*=Rx---xR=A{(x1,22,...,2p) :x1 ER,... 2, € R}.

n times

Definition 21 A map f: D C R® — R is called a function of n variables. f is a rule which
assigns to each n—tuple of numbers (x1,...,x,) € D C R™, a number f(z1,...,x,) € R. The
set D C R™ is the domain of f and the set {f(x1,...,2n) : (x1,...,2,) € D} is the range of
f-

Definition 22 The graph of a function f: D C R™ — R is the set
{(x1,. -y Tny1) (X1, oy x0) €D, Tpyr = f(21,...,20)}

Definition 23 (Level Curves) The level curves of a function f : D C R™ — R are the
curves defined by equations of the form

k= f(xy,...,zp)
for each k € R.

Definition 24 (Limits) Let f be a function of two variables with domain D € R? such that
(a,b) € D. We say the limit of f as (z,y) tends to (a,b) is L € R and we write

lim x,y) = L,
(%y)%(a:b)f( v)

if for every € > 0 there exists a § > 0 such that

((,y) = (@, b)| <6 = |f(z,y) - LI <e

Definition 25 (Continuity) Let f be a function of two variables with domain D € R? such
that (a,b) € D. We say that f is continuous at (a,b) if

lim  f(z,y) = f(a,b).

(z,y)—(a,b)

10



Definition 26 (Partial Differentiation) Let f(x,y) be a function of two variables with do-
main D € R? such that (a,b) € D. The partial derivative of f with respect to x at (a,b) is
dentoed by fr(a,b) or 0. f(a,b) and is given by

IERT f(a+hvb)_f(a’b)
fola,b) = lim Y

The partial derivative of f with respect to y at (a,b) is dentoed by fy(a,b) or 0y f(a,b) and is
given by

fila,b) = lim f<“’b+h})L— f(a,b)

Theorem 4 (Clairaut—Schwarz Theorem) Suppose f is defined on a disk D C R? con-
taining (a,b). If fuy and fy. are both continuous on D, then

fxy(avb) = fyw(a7 b)

Definition 27 (Tangent Plane) Let f(z,y) be a function of two variables with domain D C
R? with continuous partial derivatives. The equation of the tangent plane to the surface defined

by z = f(z,y) at (w0, y0, 20) is given by
z =20 = fa(%0,y0)(x — 20) + fy(z0,%0) (¥ — Yo)-

Definition 28 (Differentiability) A function f: (z,y) — f(x,y) is differentiable at a point
(a,b) if

fla+ Az, b+ Ay) — f(a,b) = fz(a,b)Ax + fy(a,b)Ay + e1Az + e2Ay,
where €1 — 0 and e — 0 as (Az, Ay) — (0,0).

Theorem 5 If the partial derivatives of f exist and are continuous in a neighborhood of a
point, then f is differentiable at that point.

Theorem 6 (Chain Rule — two variables) Suppose that z = f(x,y) is differentiable in
both x and y. If © = x(t) and y = y(t) are differentiable functions of t, then

&= _ d _ords ofdy

Theorem 7 (Chain Rule — n variables) Suppose that u is a differentiable function of n
variables x1, . .., x, and that each variable x; is a differentiable function of m variablesty, ..., tp,.
Then

Ou _ Oudw , Oudry . Oudzn
ot; - dxy Ot; Oxo Ot; Ox, Ot;’

for each i€ {1,...,m}.
Definition 29 (Directional Derivative) The directional derivative of a function f : R?
R at a point (xg,yo) in the direction i = (a,b) is given by

3 T +ah7 +bh - .Z',
Dﬁf(iﬁo,yo):}lllg%)f( 0 Yo - ) — f(x0, %)

9

assuming that the limit exists.
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Theorem 8 The directional derivative of a function f : R? — R at a point (x0,y0) in the
direction @ = (a,b) can be expressed as

Dy f(xo0,y0) = fo(x0,y0)a + fy(xo,y0)b.

Definition 30 (Gradient) If f : R" — R, i.e. f: (z1,...,24) = f(z1,...,2,), is differ-
entiable with respect to each coordinate, then the gradient of f at the point (a1, ag,...,ay) s
given by

Vi(ai,ag, ... an) = (fz,(a1,02,... a0), ..., fo,(a1,02,...,a4,)).

In two dimensions, the gmdient Of f(x7y) at (1'072/0) is Vf(330>y0) = (fr($07y0>a fy(x(]:yo))'

Theorem 9 The directional derivative Dz f achieves it’s mazrimum when @ has the same di-
rection as V f and the mazimum value of the directional derivative is |V f|.

Let f : (z,y) — f(z,y) be a differentiable function from R? to R.

Definition 31 f has a local mazimum at (a,b) if there exists an € > 0 such that f(x,y) <
f(a,b) for all (z,y) obeying \/(z — a)? — (y — b)2 < €. More usually we will say that f(z,y) <
f(a,b) for all (x,y) in some neighborhood of (a,b) — the neighborhood being referred to is the
disk of radius € centered at (a,b).

f has a local minimum at (a, b) if there exists an € > 0 such that f(x,y) > f(a,b) for all (z,y)
obeying \/(z — a)? — (y — b)? < e.

Definition 32 f has a critical point at (a,b) if fz(a,b) = fy(a,b) = 0.

Theorem 10 Local mazima and minima occur at critical points. In other words, if (a,b) is a
local mazimum or minimum for f, then it must be the case that

fz(a,b) = fy(a,b) = 0.

Definition 33 If the second order partial derivatives of f exist and are continuous in a neigh-
borhood of (a,b), then the Hessian matriz of f at (a,b) is given by the 2 x 2 matriz

 [faa(@,b) fay(arb)
Hya:b) = % " (a,b) fonlarb)

Theorem 11 Suppose f has a critical point at (a,b) and that the second order partial deriva-
tives of f exist and are continuous in a neighborhood of (a,b). Define

D = D(a,b) = det [Hf(a,b)] = fuz(a,b) fyy(a,b) — fuy(a,b)?

(i.) If D >0 and fyz(a,b) > 0, then (a,b) is a local minimum of f.
(ii.) If D > 0 and fyz(a,b) <0, then (a,b) is a local mazimum of f.

(ii5.) If D < 0, then (a,b) is neither a local minimum or a local mazimum but is called a
saddle point of f.

12



Theorem 12 If ) is a closed and bounded set in R? and f is continuous, then f attains it’s
mazximum and minimum values on €.

Maximizing/minimizing continuous functions on closed, bounded domains:

1. Find the values of the function at the critical points,
2. Find the extreme values of the function on the boundaries of the domain,

3. Find the largest/smallest of the functions values in the previous steps.

Definition 34 A Lagrange multiplier problem is a maximization (resp. minimization) problem
of the following form:

max f(z,y), A={(z,y):9(z,y)=keR}
(z,y)EA

Method of Lagrange Multipliers: Let f and g be differentiable functions from R to R
such that Vg # 0 on the surface g(z,y) = k. Then in order to solve the Lagrange multiplier
problem for f and g:

(i.) Find all the values of x, y and A such that

Vi(z,y) = AVg(x,y), g(z,y)=Fk,

(ii.) Evaluate f at the points found in step (i.) — the largest value of f is the maximum, the
smallest is the minimum.

The number A is called the Lagrange multiplier.

13



Chapter 4

Multiple Integrals

Definition 35 If D C R?, we denote the area of D by A(D). We denote the boundary of D
by 0D — recall that a point is a boundary point of D if every neighborhood of the point contains
points both inside and outside of D.

Definition 36 Let f : R?2 — R be a continuous function, where
R={(z,y) eR?*: a<z<b c<y<d.

Consider a partition of [a, b] of the form a =29 < 11 < -+ < Tpy—1 < Ty, = b and a partition
of [c, d] of the form ¢ = yo < y1 < -+ < Yn—1 < Yn = d. Choose these partitions such that
;i —xi—1 = (b—a)/m =: Az for each i =1,...,m and y; — yj—1 = (d — ¢)/n =: Ay for each
Jj =1,...,n so that each rectangle R; ; = [z;, x;—1] X [y;, yj—1] has area AA = AzAy. We
define the integral of f over R by the following limit

[ fewani= m 33 papa
R ’ i=0 j=0

where x} denotes a point in the interval [z;_1, ;] and y;-‘ denotes a point in the interval
[Yj-1, Y]

Theorem 13 (Fubini) Suppose f : R? — R is a continuous function and let
R={(z,y) eR?*: a<z<b c<y<d.

//Rf(:v,y)dA:/Cd/abf(:n,y)dzndy:/ab/cdf(l«’y)dyd%

Definition 37 D C R? is called a type—1 region if it can be expressed in the form

D={(z,y): a<z<b gi(z) <y < gan)},

for continuous scalar functions g1 and gs.

Then

E C R? is called a type-2 region if it can be expressed in the form
E={(z,y): c<y<d h(y) <z < ha(y)},

for continuous scalar functions hi and ho.

An elementary region is a region which is either type—1, type—2 or rectangular.

14



Proposition 8 Let f,g: R? — R be continuous functions and suppose D C R? is an elemen-
tary region.

(i.) [Ip fl,y) + 9(z,y)dzdy = [[}, f(z,y) dzdy + [[p g(z,y) dz dy.
(ii.) [[pef(ey)dedy =c[[, f(x,y)dxdy, where c e R.
(ii.) If g(x,y) < f(z,y) for each (x,y) € D, then [[,g(z,y)drdy < [[, f(z,y) dzdy.

(v.) If D1 and Dy are elementary regions such that D = Dy U Dy, then

/ [ty - / [ sy + / [ s dray

(v.) [[pldzdy = A(D).
(vi.) If m < f(z,y) < M for each (x,y) € D, then

m x A(D / f(z,y)dedy < M x A(D).

Definition 38 If D is an elementary region, we define the average value of f over D as
o) [ fded
z,y) dz dy.
AD) J Jp

Definition 39 (Triple integrals) Let f: B — R be a continuous function, where
B={(z,y,2) ER*: a<x<bc<y<d p<z<q}

Consider a partition of [a, b] of the form a = g < 1 < -+ < Tppy—1 < Ty, = b, a partition
of [e, d] of the form c =yp < y1 < -+ < Yn—1 < yYn = d, and a partition of [p, q] of the form
P=zp<znn<---<zZp_1<2=4g.

Choose these partitions such that x;—x;—1 = (b—a)/m =: Az foreachi=1,...,m, yj—y—1 =
(d=c)/n=: Ay for each j=1,....,n and z, — zx—1 = (¢ —p)/l =: Az for each k =1,...,¢ so
that each cuboid B; j = [xi—1, Ti] X [yj—1, ;] X [2k—1, 2] has volume AV = AzxAyAz. We
define the integral of f over B by the following limit

n

//Bf(m,y) dV := lim ZZ f Ty, Y5, 2p) AV

£,m,n—o0
0i=0 j=

where ;' denotes a point in the interval [xi—1, z;], y; denotes a point in the interval [y;—1, y;]
and z} denotes a point in the interval [zx—1, 2.

Definition 40 (Elementary regions in R3) Let E C R®. E is a type—1 region of R3 if it
can be expressed in the form

E={(z,y,2): (x,y) € D, g1(z,y) < 2 < ga(z,9)},

where D is the projection of E onto the xy-plane and g1, g2 : R? — R are continuous functions.

15



E is a type-2 region of R3 if it can be expressed in the form
E={(z,y,2): (y,2) € D, hi(y,2) <z < ha(y,2)},

where D is the projection of E onto the yz-plane and hi, ho : R? — R are continuous functions.

E is a type-3 region of R3 if it can be expressed in the form

E={(z,y,2): (x,2) € D, fi(w,2) <y < faw, 2)},
where D is the projection of E onto the xz-plane and fi, f> : R? — R are continuous functions.

E is an elementary region of R? if it is a type—1, type-2, type—3 region or a cuboid.

Theorem 14 (Fubini for triple integrals) If f : B — R is continuous, where

B={(z,y,2) eR*: a<x<bc<y<d p<z<g},

///Bf(m’y’z)dvz/pq/cd/abf(%y,Z)dxdydz.

Definition 41 A mapping T : A — A is one—to—one if for x and 2’ € A, T(x) = T(a') implies
that © = 2'.

then

Remark 1 Recall that if f: R — R is an integrable function and g : R — R is O, then
g(b) b ,
fo)do = [ Hlaw)g'w) du.

g(a)

If g is one—to-one, then it is either nondecreasing or nonincreasing and we have that

b
/ f(z) d“”:/ f(g(u))lg' (w)] du.
g9([a,b]) a
where g ([a,b]) denotes the image of [a,b] under g.

Definition 42 (Jacobian) A C' mapping from R? to itself is a map T(u,v) = (x,y) where
r = g(u,v) and y = h(u,v) such that g,h : R? — R are C*.

The Jacobian of the map T is given by

ox Ox
— |gu g _0Ox0y Oxdy
oy oy Judv  Ovou
ou Ov

-

Theorem 15 (Change of variables theorem) Let E and E* be elementary regions in R?
and suppose T : E* — E is a one-to-one mapping which is also C'. Suppose further that
T(E*) = E, i.e. E is the image of E* under the mapping T. For any integrable function
f:E— R, we have

J[remazay= [[ stetuo v |52

16
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Chapter 5

Vector Calculus

Definition 43 Let D C R2. A wector field on R? is a function F : R — R? that assigns to
each point (x,y) € D the two dimensional vector F(x,y).

Example 2 If f : R? — R, then Vf(z,y) defines a vector field on R2.

Definition 44 (Conservative Vector Field) A vector field F : R? — R? is called a conser-
vative vector field if there exists an f : R? — R such that F(x,y) = Vf(z,y).

Definition 45 (Line Integral) Let C' be a smooth curve defined by

C ={(z(t),y(®)) : t € [a,0]}.

C smooth means that x and y are C functions from R to R. Consider a partition of [a,b] of
the form

a=ty<t1 <---<th1<th,=0b,

and divide C' into n equal length subarcs, i.e.

Ci ={(2(t),y(t)) : t € [tim1, 8]}, i €{1,...,n}

where t; — t;_1 = At for each i € {1,...,n}. We define the line integral of the function
f:R? =R over C by

7@ ds= Jim 3 f (e ole) As,
=0
where t} € [ti—1,t;] for each € {1,...,n} and As; is the length of the i-th subarc C;.

Proposition 9 If C is a smooth curve as in Definition 45 and f : R — R is integrable, then

b
/C f(x,y) ds = / £ (1), y(1) V@ + g (O dt

17



Definition 46 The line integral of f over C with respect to x is given by

b
/ f(2,y) de = / £ (a(t),y()) 2/ (1) dt
C a

and the line integral of f over C with respect to y is given by
b
| e ay= [ rao.0m)voa.

Definition 47 Let F : R? — R be a continuous vector field defined on a smooth curve C given
by a vector function 7 : [a,b] — R2. Then the line integral of F along C is

/CF-dF: /abF(F(t))-F’(t) dt.

Theorem 16 Suppose C is a smooth curve given by a vector function 7 : [a,b] — R2. If
f:R? = R is a differentiable function, then

/C V- di = f(i{(b)) — [(7(a).

Definition 48 We say that a line integral is path independent if for any two smooth curves
C1 and Co which begin and end at the same point, we have

/F-dF:/ F-dr.
Cl C2

Theorem 17 Suppose D C R2. [ F -dF is path independent in D if and only if [, F-di =0
for every closed curve C in D (a curve is closed if it starts and ends al the same point).

Theorem 18 Suppose F' is a wvector field that is continuous on an open connected region
D C R2. If fCF - dr is independent of path on D, then F is a conservative vector field on D.

Theorem 19 If F' = Pi+ Q; is a conservative vector field on D C R?, with P,Q C* on D,

then 9P 90
— == D.
Jy oz on

Theorem 20 Let F be a vector field on an open simply—connected region D C R?. Suppose

P,Q are C' on D and
or_0Q
oy  Ox ’

then F' 1s conservative on D.

Theorem 21 If F(z,y) = P(:L',y);—k Q(x,y); is a conservative vector field on D C R? with
P, Q continuously differentiable on D, then
orP 0
—_— = —Q on D.
oy ox

18



Definition 49 A curve is simple if it does not intersect itself.

Definition 50 A region D C R? is simply—connected if every simple closed curve in D encloses
only points contained in D (“D has no holes”).

Theorem 22 Let F be a vector field on an open and simply—connected region D C R?. Suppose

P.Q are C' on D and

o 9Q
o _ 9% D
oy  Ox o

then F' is conservative on D.

Theorem 23 (Green’s Theorem) Suppose C is a positively oriented (i.e. counterclock-
wise), piecewise-Ct, simple closed curve in R?. Denote by D the region of the plane enclosed
by C, i.e. 0D =C. E C R? is an open set such that D C E and P,Q : R?> - R are C' on E.

Then 5 op
/Pdm—iery:// (Q—> dA.
C D ox 8y

Definition 51 (Curl) Let F : R3 + R? be a vector field. The curl of the vector field F is

given by
(R 0QY., (9P OR\. (00 0P\
Curl(F)_(@y 82>z+<8z 0:E>‘7+<8x 8y)k’

where F(z,y,z) = Pi+ Qj + Rk.

Remark 2 If V denotes the gradient operator and X the cross product, then we have the
following “formal” expression for the curl:

curl (F) =V X F.

Theorem 24 If f : R3 — R has continuous second order partials, then
curl (Vf) =0,

i.e. conservative vector fields have zero curl.

Remark 3 The contrapositive form of the previous theorem is very useful: a vector field with
nonzero curl is not conservative.

Theorem 25 Suppose F : R? — R3 is a vector field whose components are C* on all of R3.
If curl (F) = 0, then F is conservative.

Definition 52 (Divergence) Let F : R3 = R? be a vector field. The divergence of the vector
field F' is given by

div(F)= — 4+ — + —,
2
where F(xz,y,z) = Pi+ Q7 + Rk.
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Remark 4 We have the following “formal” expression for the divergence:
div(F)=V-F
Theorem 26 If F(z,y,2) = Pi+Qj+ RE is a vector field on R? such that P, Q and R are

C?, then
div(curl (F)) = 0.

Remark 5 We can rewrite Green’s Theorem using the divergence and curl as follows:
If F = Pi+ Qj+ 0k, then

/CdeJery:/CF-ﬁds://Ddiv(F)dA://Dcurl(F)-EdA,

where 1 1s the unit normal to the curve C.

Bonus Material (higher dimensions):

Suppose z,y, z : R? — R and thus let ¥ = zi + y}'+ 2k describe the 3-dimensional surface S.
The integral of f : R? — R over the surface S parameterised by 7 is given by

f(z,y,2)dS = (7 (u,v)) gf(u, v) X 2F(u, v)
//s //D ‘6u ov

where D is the projection of S onto R2.

The integral of the vector field F' : R = R? over the surface S (defined as above) is

//SF-ds:://SF-ﬁdsz//DF-<8auf(u,u)xaavf(u,v)> A

where 77 is the unit normal vector to S.

dA,

Theorem 27 (Stoke’s Theorem) Let S be an oriented piecewise smooth surface that is
bounded by a simple piecewise smooth closed boundary curve C with positive orientation. Let
F be a C' wector field on an open region in R3 which contains S. Then

//CF‘dF://Scurl(F)'dS.

20



	Vectors and Geometry
	Vector–valued Functions
	Partial Differentiation
	Multiple Integrals
	Vector Calculus

