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Chapter 1

Vectors and Geometry

Definition 1 The Cartesian product of two sets A and B, denoted by A×B, is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B, i.e.

A×B := {(a, b) : a ∈ A, b ∈ B}.

Definition 2 R3 = R× R× R = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R}.

Definition 3 A surface S in R3 is a set of points obeying a relation of the form f(x, y, z) = 0
for some smooth function f : R3 7→ R.

Example 1 (Surfaces in R3) A sphere of radius r with center (x0, y0, z0) is the set of all
points (x, y, z) satisfying the equation (x− x0)2 + (y − y0)2 + (z − z20) = r2.

A cylinder in R3 centered on the z–axis with radius r and height h is the set of all points
(x, y, z) obeying x2 + y2 = r2 and 0 ≤ z ≤ h. The base of this cylinder sits on the xy–plane.

Definition 4 The Euclidean distance between two points, say (x0, z, y0, z0) and (x1, y1, z1),
in R3 is given by the formula

d ((x0, y0, z0), (x1, y1, z1)) =
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2.

Definition 5 A vector is a quantity with both a magnitude and a direction (e.g. a force). We
will consider points in R3 as vectors – the direction of a vector ~a = (x, y, z) is the direction of
the line segment connecting (0, 0, 0) to (x, y, z) and the magnitude of the vector ~a is the length
of this line segment, i.e. the magnitude of ~a is given by

|~a| =
√
x2 + y2 + z2.

Definition 6 (Vector operations) If ~a = (a1, a2, a3) and ~b = (b1, b2, b3) are vectors in R3,
then

~a+~b = (a1 + b1, a2 + b2, a3 + b3) [Vector addition]

and
c~a = (c a1, c a2, c a3) for each c ∈ R, [Scalar multiplication]

where the number c is referred to as a scalar in this context.
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Figure 1.1: Left: Parallelogram law for vector addition. Right: ~b−~a is the vector corresponding
the line segment connecting the endpoint of ~a to the endpoint of ~b.

Proposition 1 (Properties of Vector Operations) If ~a and ~b denote vectors and
~0 = (0, 0, 0) denotes the zero vector, then

(i) ~a+~b = ~b+ ~a

(ii) ~a+
(
~b+ ~c

)
=
(
~a+~b

)
+ ~c

(iii) ~a+~0 = ~a

(iv) ~a+ (−~a) = ~0

(v) c
(
~a+~b

)
= c~a+ c~b

(vi) (c+ d)~a = c~a+ d~a

(vii) (cd)~a = c(d~a)

(viii) 1× ~a = ~a

Definition 7 The standard basis vectors in R3 are given by

~i = (1, 0, 0), ~j = (0, 1, 0), ~k = (0, 0, 1).

Any vector ~a = (a1, a2, a3) can be represented in terms of the standard basis vectors as follows:

~a = a1~i+ a2~j + a3 ~k

Definition 8 (Dot Product) The dot product of two vectors ~a = (a1, a2, a3) and ~b =
(b1, b2, b3) is the scalar a ·~b whose value is given by the formula

~a ·~b = a1 b1 + a2 b2 + a3 b3.

Proposition 2 (Properties of the Dot Product) Suppose that veca and vecb are vectors
and c ∈ R. Then

1. ~a · ~a = |a|2
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2. ~a ·~b = ~b · ~a

3. ~a ·
(
~b+ ~c

)
=
(
~a+~b

)
· ~c

4. (c~a) ·~b = c
(
~a ·~b

)
= ~a ·

(
c~b
)

5. ~0 · ~a = 0

Theorem 1 If ~a and ~b are vectors with an angle θ between them, then

~a ·~b = |~a| |~b| cos θ,

and hence, if ~a and ~b are both nonzero,

θ = cos−1

(
~a ·~b
|~a| |~b|

)

Corollary 1 Two vectors are said to be orthogonal if the angle between them is 90 degrees
(the zero vector is considered orthogonal to every other vector).

Two vectors are orthogonal if and only if their dot product is zero.

Definition 9 Let ~a and ~b denote vectors. The scalar projection of ~b onto ~a is given by

comp~a
~b =

~a ·~b
|~a|

[scalar]

and the vector projection of ~b onto ~a is given by

proj~a
~b =

~a ·~b
|~a|2

~a [vector].

Definition 10 The cross product of the vectors ~a = (a1, a2, a3) and ~b = (b1, b2, b3) is the
vector ~a×~b given by the formula

~a×~b = (a2 b3 − b2 a3, b1 a3 − a1 b3, a1 b2 − a2 b1) .

~a×~b is orthogonal to both ~a and ~b and its direction is given by the “right–hand rule”.

Theorem 2 If ~a and ~b are vectors in R3 with an angle θ between them, then

|~a×~b| = |~a| |~b| sin θ.

Corollary 2 Two vectors ~a and ~b in R3 are parallel if and only if ~a×~b = 0.

Proposition 3 (Properties of the Cross Product) Let ~a, ~b and ~c denote vectors in R3,
and c a scalar. Then

(i.) ~a×~b = −~b× a
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(ii.) (c~a)×~b = c
(
~a×~b

)
= ~a×

(
c~b
)

(iii.) ~a×
(
~b+ ~c

)
= ~a×~b+ ~a× ~c

(iv.)
(
~a+~b

)
× ~c = ~a× ~c+~b× ~c

(v.) ~a ·
(
~b× ~c

)
=
(
~a×~b

)
· ~c

(vi.) ~a×~b× ~c = (~a · ~c)~b−
(
~a ·~b

)
~c

Proposition 4 In R3, the volume V of the parallelepiped determined by the vectors ~a, ~b and
~c is the magnitude of their scalar triple product, which is given by

V =
∣∣∣~a · (~b× ~c)∣∣∣
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Chapter 2

Vector–valued Functions

Definition 11 The parametric equation of the line L through the point ~r0 = (x0, y0, z0) with
direction vector ~v = (a, b, c) is given by

~r(t) = (x0 + at, y0 + bt, z0 + ct) = ~r0 + t~v, t ∈ R.

The symmetric equations of the line L are given by

x− x0
a

=
y − y0
b

=
z − z0
c

,

provided that a, b and c are all nonzero.

Definition 12 The plane through ~r0 = (x0, y0, z0) with normal vector ~n = (a, b, c) is given
by the set of vectors ~r = (x, y, z) obeying the equation

~n · (~r − ~r0) = a(x− x0) + b(y − y0) + c(z − z0) = 0.

Proposition 5 The distance from the point (x1, y1, z1) to the plane with equation ax+ by +
cz = d is given by

|ax1 + by1 + cz1 + d|√
a2 + b2 + c2

.

Definition 13 A vector–valued function ~r : R 7→ R3 is given by

~r(t) = (x(t), y(t), z(t)) , t ∈ R,

where x : R 7→ R, y : R 7→ R and z : R 7→ R are called the component functions of ~r.

Definition 14 (Limits and Continuity) If ~r(t) = (x(t), y(t), z(t)), then

lim
t→t0

~r(t) =

(
lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

)
,

assuming the componentwise limits exist and ~r is continuous at a ∈ R if limt→a ~r(t) = ~r(a).
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Definition 15 If ~r(t) = (x(t), y(t), z(t)), then the derivative of ~r is given by

d

dt
~r(t) =

(
x′(t), y′(t), z′(t)

)
,

assuming the component functions of ~r are differentiable.

Proposition 6 (Derivatives of Vector Functions) Let ~u and ~v be vector valued functions,
f a scalar function and c a scalar. Then

(i) d
dt (~u(t) + ~v(t)) = d

dt~u(t) + d
dt~v(t)

(ii) d
dt

(
c ~u(t)

)
= c d

dt~u(t)

(iii) d
dt (f(t)~u(t)) = f ′(t)~u(t) + f(t) d

dt~u(t)

(iv) d
dt (~u(t) · ~v(t)) = d

dt~u(t) · ~v(t) + ~u(t) · d
dt~v(t)

(v) d
dt (~u(t)× ~v(t)) = d

dt~u(t)× ~v(t) + ~u(t)× d
dt~v(t)

(vi) d
dt (~u (f(t))) = f ′(t)~u ′ (f(t))

Suppose that ~r(t) = (x(t), y(t), z(t)), where x : R 7→ R, y : R 7→ R and z : R 7→ R. We also
ask that x′, y′ and z′ are continuous.

Proposition 7 (Integration of vector functions)∫ b

a
~r(t) dt =

(∫ b

a
x(t) dt,

∫ b

a
y(t) dt,

∫ b

a
z(t) dt

)
, a, b ∈ R.

Definition 16 The length of the curve C = {(x, y, z) : (x, y, z) = ~r(t) for some t ∈ [a, b]} is
given by

L =

∫ b

a

√
(x′(t))2 + (y′(t))2 + + (z′(t))2 dt =

∫ b

a

∣∣~r ′(t)∣∣ dt.
Definition 17 The arc length function s measures the length of the curve between a starting
point t = a and some variable endpoint:

s(t) :=

∫ t

a

∣∣~r ′(t)∣∣ dt, t ∈ [a, b].

A curve traced out by ~r is parameterised with respect to arc length by computing the new
parameterisation ~ρ:

~ρ(t) = ~r(s−1(t)).

Definition 18 (Curvature) The curve C traced out by ~r is smooth if x′, y′ and z′ are con-
tinuous and ~r ′(t) 6= 0. The unit tangent vector to C at a point t is then given by

~T (t) =
~r ′(t)

|~r ′(t)|
.
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The curvature of C at t is denoted by κ and is given by

κ(t) :=

∣∣∣∣∣d~Tds
∣∣∣∣∣ =

∣∣∣~T ′(t)∣∣∣
|~r ′(t)|

,

where s denotes the arc length function.

Theorem 3 The curvature can be expressed directly in terms of the vector fuction ~r which
paramterises the curve as follows (if ~r is twice differentiable):

κ(t) =
|~r ′(t)× ~r ′′(t)|
|~r ′(t)|3

.

Definition 19 The normal vector ~N and Binormal vector ~B to a curve traced out by a function
~r are given by

~N(t) :=
~T ′(t)∣∣∣~T ′(t)∣∣∣ , ~B(t) := ~T (t)× ~N(t).

The normal plane to a curve at a point is the plane containing the vectors ~N and ~B – it
contains all lines orthogonal to ~T . The osculating plane to a curve at a given point is the
plane which contains ~T and ~N – it is the plane that comes closest to containing the part of the
curve at the chosen point.

9



Chapter 3

Partial Differentiation

Definition 20 For a given natural number n we define the set Rn to be the n–fold Cartesian
product of R with itself, i.e

Rn = R× · · · × R︸ ︷︷ ︸
n times

= {(x1, x2, . . . , xn) : x1 ∈ R, . . . , xn ∈ R}.

Definition 21 A map f : D ⊂ Rn 7→ R is called a function of n variables. f is a rule which
assigns to each n–tuple of numbers (x1, . . . , xn) ∈ D ⊂ Rn, a number f(x1, . . . , xn) ∈ R. The
set D ⊂ Rn is the domain of f and the set {f(x1, . . . , xn) : (x1, . . . , xn) ∈ D} is the range of
f .

Definition 22 The graph of a function f : D ⊂ Rn 7→ R is the set

{(x1, . . . , xn+1) : (x1, . . . , xn) ∈ D, xn+1 = f(x1, . . . , xn)}.

Definition 23 (Level Curves) The level curves of a function f : D ⊂ Rn 7→ R are the
curves defined by equations of the form

k = f(x1, . . . , xn)

for each k ∈ R.

Definition 24 (Limits) Let f be a function of two variables with domain D ∈ R2 such that
(a, b) ∈ D. We say the limit of f as (x, y) tends to (a, b) is L ∈ R and we write

lim
(x,y)→(a,b)

f(x, y) = L,

if for every ε > 0 there exists a δ > 0 such that

|(x, y)− (a, b)| < δ ⇒ |f(x, y)− L| < ε.

Definition 25 (Continuity) Let f be a function of two variables with domain D ∈ R2 such
that (a, b) ∈ D. We say that f is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).
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Definition 26 (Partial Differentiation) Let f(x, y) be a function of two variables with do-
main D ∈ R2 such that (a, b) ∈ D. The partial derivative of f with respect to x at (a, b) is
dentoed by fx(a, b) or ∂xf(a, b) and is given by

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
.

The partial derivative of f with respect to y at (a, b) is dentoed by fy(a, b) or ∂yf(a, b) and is
given by

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
.

Theorem 4 (Clairaut–Schwarz Theorem) Suppose f is defined on a disk D ⊂ R2 con-
taining (a, b). If fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b).

Definition 27 (Tangent Plane) Let f(x, y) be a function of two variables with domain D ⊂
R2 with continuous partial derivatives. The equation of the tangent plane to the surface defined
by z = f(x, y) at (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Definition 28 (Differentiability) A function f : (x, y) 7→ f(x, y) is differentiable at a point
(a, b) if

f(a+ ∆x, b+ ∆y)− f(a, b) = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y,

where ε1 → 0 and ε2 → 0 as (∆x,∆y)→ (0, 0).

Theorem 5 If the partial derivatives of f exist and are continuous in a neighborhood of a
point, then f is differentiable at that point.

Theorem 6 (Chain Rule – two variables) Suppose that z = f(x, y) is differentiable in
both x and y. If x = x(t) and y = y(t) are differentiable functions of t, then

dz

dt
=

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Theorem 7 (Chain Rule – n variables) Suppose that u is a differentiable function of n
variables x1, . . . , xn and that each variable xj is a differentiable function of m variables t1, . . . , tm.
Then

∂u

∂ti
=

∂u

∂x1

∂x1
∂ti

+
∂u

∂x2

∂x2
∂ti

+ · · ·+ ∂u

∂xn

∂xn
∂ti

,

for each i ∈ {1, . . . ,m}.

Definition 29 (Directional Derivative) The directional derivative of a function f : R2 7→
R at a point (x0, y0) in the direction ~u = (a, b) is given by

D~uf(x0, y0) = lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
,

assuming that the limit exists.
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Theorem 8 The directional derivative of a function f : R2 7→ R at a point (x0, y0) in the
direction ~u = (a, b) can be expressed as

D~uf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b.

Definition 30 (Gradient) If f : Rn 7→ R, i.e. f : (x1, . . . , xn) 7→ f(x1, . . . , xn), is differ-
entiable with respect to each coordinate, then the gradient of f at the point (a1, a2, . . . , an) is
given by

∇f(a1, a2, . . . , an) = (fx1(a1, a2, . . . , an), . . . , fxn(a1, a2, . . . , an)) .

In two dimensions, the gradient of f(x, y) at (x0, y0) is ∇f(x0, y0) = (fx(x0, y0), fy(x0, y0)).

Theorem 9 The directional derivative D~uf achieves it’s maximum when ~u has the same di-
rection as ∇f and the maximum value of the directional derivative is |∇f |.

Let f : (x, y) 7→ f(x, y) be a differentiable function from R2 to R.

Definition 31 f has a local maximum at (a, b) if there exists an ε > 0 such that f(x, y) ≤
f(a, b) for all (x, y) obeying

√
(x− a)2 − (y − b)2 < ε. More usually we will say that f(x, y) ≤

f(a, b) for all (x, y) in some neighborhood of (a, b) – the neighborhood being referred to is the
disk of radius ε centered at (a, b).

f has a local minimum at (a, b) if there exists an ε > 0 such that f(x, y) ≥ f(a, b) for all (x, y)
obeying

√
(x− a)2 − (y − b)2 < ε.

Definition 32 f has a critical point at (a, b) if fx(a, b) = fy(a, b) = 0.

Theorem 10 Local maxima and minima occur at critical points. In other words, if (a, b) is a
local maximum or minimum for f , then it must be the case that

fx(a, b) = fy(a, b) = 0.

Definition 33 If the second order partial derivatives of f exist and are continuous in a neigh-
borhood of (a, b), then the Hessian matrix of f at (a, b) is given by the 2× 2 matrix

Hf (a, b) =

[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

]

Theorem 11 Suppose f has a critical point at (a, b) and that the second order partial deriva-
tives of f exist and are continuous in a neighborhood of (a, b). Define

D = D(a, b) = det [Hf (a, b)] = fxx(a, b)fyy(a, b)− fxy(a, b)2.

(i.) If D > 0 and fxx(a, b) > 0, then (a, b) is a local minimum of f .

(ii.) If D > 0 and fxx(a, b) < 0, then (a, b) is a local maximum of f .

(iii.) If D < 0, then (a, b) is neither a local minimum or a local maximum but is called a
saddle point of f .
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Theorem 12 If Ω is a closed and bounded set in R2 and f is continuous, then f attains it’s
maximum and minimum values on Ω.

Maximizing/minimizing continuous functions on closed, bounded domains:

1. Find the values of the function at the critical points,

2. Find the extreme values of the function on the boundaries of the domain,

3. Find the largest/smallest of the functions values in the previous steps.

Definition 34 A Lagrange multiplier problem is a maximization (resp. minimization) problem
of the following form:

max
(x,y)∈A

f(x, y), A = {(x, y) : g(x, y) = k ∈ R}.

Method of Lagrange Multipliers: Let f and g be differentiable functions from R to R
such that ∇g 6= 0 on the surface g(x, y) = k. Then in order to solve the Lagrange multiplier
problem for f and g:

(i.) Find all the values of x, y and λ such that

∇f(x, y) = λ∇g(x, y), g(x, y) = k,

(ii.) Evaluate f at the points found in step (i.) — the largest value of f is the maximum, the
smallest is the minimum.

The number λ is called the Lagrange multiplier.
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Chapter 4

Multiple Integrals

Definition 35 If D ⊂ R2, we denote the area of D by A(D). We denote the boundary of D
by ∂D – recall that a point is a boundary point of D if every neighborhood of the point contains
points both inside and outside of D.

Definition 36 Let f : R2 7→ R be a continuous function, where

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Consider a partition of [a, b] of the form a = x0 < x1 < · · · < xm−1 < xm = b and a partition
of [c, d] of the form c = y0 < y1 < · · · < yn−1 < yn = d. Choose these partitions such that
xi − xi−1 = (b− a)/m =: ∆x for each i = 1, . . . ,m and yj − yj−1 = (d− c)/n =: ∆y for each
j = 1, . . . , n so that each rectangle Ri,j = [xi, xi−1] × [yj , yj−1] has area ∆A = ∆x∆y. We
define the integral of f over R by the following limit∫∫

R
f(x, y) dA := lim

m,n→∞

m∑
i=0

n∑
j=0

f(x∗i , y
∗
j )∆A

where x∗i denotes a point in the interval [xi−1, xi] and y∗j denotes a point in the interval
[yj−1, yj ].

Theorem 13 (Fubini) Suppose f : R2 7→ R is a continuous function and let

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then ∫∫
R
f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx.

Definition 37 D ⊂ R2 is called a type–1 region if it can be expressed in the form

D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

for continuous scalar functions g1 and g2.

E ⊂ R2 is called a type–2 region if it can be expressed in the form

E = {(x, y) : c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)},

for continuous scalar functions h1 and h2.

An elementary region is a region which is either type–1, type–2 or rectangular.
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Proposition 8 Let f, g : R2 7→ R be continuous functions and suppose D ⊂ R2 is an elemen-
tary region.

(i.)
∫∫

D f(x, y) + g(x, y) dx dy =
∫∫

D f(x, y) dx dy +
∫∫

D g(x, y) dx dy.

(ii.)
∫∫

D c f(x, y) dx dy = c
∫∫

D f(x, y) dx dy, where c ∈ R.

(iii.) If g(x, y) ≤ f(x, y) for each (x, y) ∈ D, then
∫∫

D g(x, y) dx dy ≤
∫∫

D f(x, y) dx dy.

(iv.) If D1 and D2 are elementary regions such that D = D1 ∪D2, then∫ ∫
D
f(x, y) dx dy =

∫ ∫
D1

f(x, y) dx dy +

∫ ∫
D2

f(x, y) dx dy.

(v.)
∫∫

D 1 dx dy = A(D).

(vi.) If m ≤ f(x, y) ≤M for each (x, y) ∈ D, then

m×A(D) ≤
∫ ∫

D
f(x, y) dx dy ≤M ×A(D).

Definition 38 If D is an elementary region, we define the average value of f over D as

1

A(D)

∫ ∫
D
f(x, y) dx dy.

Definition 39 (Triple integrals) Let f : B 7→ R be a continuous function, where

B = {(x, y, z) ∈ R3 : a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q}.

Consider a partition of [a, b] of the form a = x0 < x1 < · · · < xm−1 < xm = b, a partition
of [c, d] of the form c = y0 < y1 < · · · < yn−1 < yn = d, and a partition of [p, q] of the form
p = z0 < z1 < · · · < z`−1 < z` = q.

Choose these partitions such that xi−xi−1 = (b−a)/m =: ∆x for each i = 1, . . . ,m, yj−yj−1 =
(d− c)/n =: ∆y for each j = 1, . . . , n and zk − zk−1 = (q− p)/` =: ∆z for each k = 1, . . . , ` so
that each cuboid Bi,j.k = [xi−1, xi] × [yj−1, yj ] × [zk−1, zk] has volume ∆V = ∆x∆y∆z. We
define the integral of f over B by the following limit∫∫∫

B
f(x, y) dV := lim

`,m,n→∞

∑̀
k=0

m∑
i=0

n∑
j=0

f(x∗i , y
∗
j , z

∗
k)∆V

where x∗i denotes a point in the interval [xi−1, xi], y
∗
j denotes a point in the interval [yj−1, yj ]

and z∗k denotes a point in the interval [zk−1, zk].

Definition 40 (Elementary regions in R3) Let E ⊂ R3. E is a type–1 region of R3 if it
can be expressed in the form

E = {(x, y, z) : (x, y) ∈ D, g1(x, y) ≤ z ≤ g2(x, y)},

where D is the projection of E onto the xy-plane and g1, g2 : R2 7→ R are continuous functions.

15



E is a type–2 region of R3 if it can be expressed in the form

E = {(x, y, z) : (y, z) ∈ D, h1(y, z) ≤ x ≤ h2(y, z)},

where D is the projection of E onto the yz-plane and h1, h2 : R2 7→ R are continuous functions.

E is a type–3 region of R3 if it can be expressed in the form

E = {(x, y, z) : (x, z) ∈ D, f1(x, z) ≤ y ≤ f2(x, z)},

where D is the projection of E onto the xz-plane and f1, f2 : R2 7→ R are continuous functions.

E is an elementary region of R3 if it is a type–1, type–2, type–3 region or a cuboid.

Theorem 14 (Fubini for triple integrals) If f : B 7→ R is continuous, where

B = {(x, y, z) ∈ R3 : a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q},

then ∫∫∫
B
f(x, y, z) dV =

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dx dy dz.

Definition 41 A mapping T : A 7→ A is one–to–one if for x and x′ ∈ A, T (x) = T (x′) implies
that x = x′.

Remark 1 Recall that if f : R 7→ R is an integrable function and g : R 7→ R is C1, then∫ g(b)

g(a)
f(x) dx =

∫ b

a
f(g(u))g′(u) du.

If g is one–to-one, then it is either nondecreasing or nonincreasing and we have that∫
g([a,b])

f(x) dx =

∫ b

a
f(g(u))|g′(u)| du.

where g ([a, b]) denotes the image of [a, b] under g.

Definition 42 (Jacobian) A C1 mapping from R2 to itself is a map T (u, v) = (x, y) where
x = g(u, v) and y = h(u, v) such that g, h : R2 7→ R are C1.

The Jacobian of the map T is given by

JT =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

Theorem 15 (Change of variables theorem) Let E and E∗ be elementary regions in R2

and suppose T : E∗ 7→ E is a one–to–one mapping which is also C1. Suppose further that
T (E∗) = E, i.e. E is the image of E∗ under the mapping T . For any integrable function
f : E 7→ R, we have∫∫

E
f(x, y) dx dy =

∫∫
E∗
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv.
16



Chapter 5

Vector Calculus

Definition 43 Let D ⊂ R2. A vector field on R2 is a function F : R2 7→ R2 that assigns to
each point (x, y) ∈ D the two dimensional vector F (x, y).

Example 2 If f : R2 7→ R, then ∇f(x, y) defines a vector field on R2.

Definition 44 (Conservative Vector Field) A vector field F : R2 7→ R2 is called a conser-
vative vector field if there exists an f : R2 7→ R such that F (x, y) = ∇f(x, y).

Definition 45 (Line Integral) Let C be a smooth curve defined by

C = {(x(t), y(t)) : t ∈ [a, b]}.

C smooth means that x and y are C1 functions from R to R. Consider a partition of [a, b] of
the form

a = t0 < t1 < · · · < tn−1 < tn = b,

and divide C into n equal length subarcs, i.e.

Ci = {(x(t), y(t)) : t ∈ [ti−1, ti]}, i ∈ {1, . . . , n}

where ti − ti−1 = ∆t for each i ∈ {1, . . . , n}. We define the line integral of the function
f : R2 7→ R over C by ∫

C
f (x, y) ds = lim

n→∞

n∑
i=0

f (x(t∗i ), y(t∗i )) ∆si

where t∗i ∈ [ti−1, ti] for each ∈ {1, . . . , n} and ∆si is the length of the i-th subarc Ci.

Proposition 9 If C is a smooth curve as in Definition 45 and f : R2 7→ R is integrable, then∫
C
f (x, y) ds =

∫ b

a
f (x(t), y(t))

√
x′(t)2 + y′(t)2 dt

17



Definition 46 The line integral of f over C with respect to x is given by∫
C
f (x, y) dx =

∫ b

a
f (x(t), y(t))x′(t) dt

and the line integral of f over C with respect to y is given by∫
C
f (x, y) dy =

∫ b

a
f (x(t), y(t)) y′(t) dt.

Definition 47 Let F : R2 7→ R be a continuous vector field defined on a smooth curve C given
by a vector function ~r : [a, b] 7→ R2. Then the line integral of F along C is∫

C
F · d~r =

∫ b

a
F (~r(t)) · ~r′(t) dt.

Theorem 16 Suppose C is a smooth curve given by a vector function ~r : [a, b] 7→ R2. If
f : R2 7→ R is a differentiable function, then∫

C
∇f · d~r = f(~r(b))− f(~r(a)).

Definition 48 We say that a line integral is path independent if for any two smooth curves
C1 and C2 which begin and end at the same point, we have∫

C1

F · d~r =

∫
C2

F · d~r.

Theorem 17 Suppose D ⊂ R2.
∫
C F · d~r is path independent in D if and only if

∫
C F · d~r = 0

for every closed curve C in D (a curve is closed if it starts and ends at the same point).

Theorem 18 Suppose F is a vector field that is continuous on an open connected region
D ⊂ R2. If

∫
C F · d~r is independent of path on D, then F is a conservative vector field on D.

Theorem 19 If F = P~i + Q~j is a conservative vector field on D ⊂ R2, with P,Q C1 on D,
then

∂P

∂y
=
∂Q

∂x
on D.

Theorem 20 Let F be a vector field on an open simply–connected region D ⊂ R2. Suppose
P,Q are C1 on D and

∂P

∂y
=
∂Q

∂x
on D,

then F is conservative on D.

Theorem 21 If F (x, y) = P (x, y)~i + Q(x, y)~j is a conservative vector field on D ⊂ R2 with
P,Q continuously differentiable on D, then

∂P

∂y
=
∂Q

∂x
on D.
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Definition 49 A curve is simple if it does not intersect itself.

Definition 50 A region D ⊆ R2 is simply–connected if every simple closed curve in D encloses
only points contained in D (“D has no holes”).

Theorem 22 Let F be a vector field on an open and simply–connected region D ⊂ R2. Suppose
P,Q are C1 on D and

∂P

∂y
=
∂Q

∂x
on D,

then F is conservative on D.

Theorem 23 (Green’s Theorem) Suppose C is a positively oriented (i.e. counterclock-
wise), piecewise–C1, simple closed curve in R2. Denote by D the region of the plane enclosed
by C, i.e. ∂D = C. E ⊂ R2 is an open set such that D ⊂ E and P,Q : R2 7→ R are C1 on E.
Then ∫

C
P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Definition 51 (Curl) Let F : R3 7→ R3 be a vector field. The curl of the vector field F is
given by

curl (F ) =

(
∂R

∂y
− ∂Q

∂z

)
~i+

(
∂P

∂z
− ∂R

∂x

)
~j +

(
∂Q

∂x
− ∂P

∂y

)
~k,

where F (x, y, z) = P~i+Q~j +R~k.

Remark 2 If ∇ denotes the gradient operator and × the cross product, then we have the
following “formal” expression for the curl:

curl (F ) = ∇× F.

Theorem 24 If f : R3 7→ R has continuous second order partials, then

curl (∇f) = 0,

i.e. conservative vector fields have zero curl.

Remark 3 The contrapositive form of the previous theorem is very useful: a vector field with
nonzero curl is not conservative.

Theorem 25 Suppose F : R3 7→ R3 is a vector field whose components are C1 on all of R3.
If curl (F ) = 0, then F is conservative.

Definition 52 (Divergence) Let F : R3 7→ R3 be a vector field. The divergence of the vector
field F is given by

div (F ) =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
,

where F (x, y, z) = P~i+Q~j +R~k.
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Remark 4 We have the following “formal” expression for the divergence:

div (F ) = ∇ · F

Theorem 26 If F (x, y, z) = P~i+Q~j + R~k is a vector field on R3 such that P, Q and R are
C2, then

div (curl (F )) = 0.

Remark 5 We can rewrite Green’s Theorem using the divergence and curl as follows:
If F = P~i+Q~j + 0~k, then∫

C
P dx+Qdy =

∫
C
F · ~n ds =

∫∫
D

div (F ) dA =

∫∫
D

curl (F ) · ~k dA,

where ~n is the unit normal to the curve C.

Bonus Material (higher dimensions):

Suppose x, y, z : R2 7→ R and thus let ~r = x~i+ y~j + z~k describe the 3–dimensional surface S.
The integral of f : R3 7→ R over the surface S parameterised by ~r is given by∫∫

S
f(x, y, z) dS =

∫∫
D
f(~r(u, v))

∣∣∣∣ ∂∂u~r(u, v)× ∂

∂v
~r(u, v)

∣∣∣∣ dA,
where D is the projection of S onto R2.

The integral of the vector field F : R3 7→ R3 over the surface S (defined as above) is∫∫
S
F · dS :=

∫∫
S
F · ~n dS =

∫∫
D
F ·
(
∂

∂u
~r(u, v)× ∂

∂v
~r(u, v)

)
dA

where ~n is the unit normal vector to S.

Theorem 27 (Stoke’s Theorem) Let S be an oriented piecewise smooth surface that is
bounded by a simple piecewise smooth closed boundary curve C with positive orientation. Let
F be a C1 vector field on an open region in R3 which contains S. Then∫∫

C
F · d~r =

∫∫
S

curl (F ) · dS.
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